ASP.NET Boilerplate 内存缓存 SizeLimit 配置问题解析
问题背景
在使用 ASP.NET Boilerplate (ABP) 框架 9.1.1 版本时,开发者在配置内存缓存时遇到了一个异常情况。当设置了 MemoryCacheOptions 的 SizeLimit 属性后,系统会抛出 InvalidOperationException 异常,提示"Cache entry must specify a value for Size when SizeLimit is set"。
异常分析
这个异常的根本原因是 Microsoft.Extensions.Caching.Memory 内存缓存实现的一个约束条件:当设置了缓存大小限制(SizeLimit)时,每个缓存条目都必须明确指定其大小(Size)值。如果不指定,缓存系统就无法正确计算当前已使用的缓存总量,也就无法执行基于大小的缓存淘汰策略。
问题复现条件
- 配置了内存缓存大小限制:
Configuration.Caching.MemoryCacheOptions = new MemoryCacheOptions
{
SizeLimit = 256 // 单位是MB
};
-
使用 ABP 的缓存系统进行数据存取操作
-
ABP 内部在设置缓存条目时没有为每个条目指定 Size 值
解决方案
ABP 框架团队通过修改 AbpMemoryCache 类的 Set 方法解决了这个问题。具体做法是在创建 MemoryCacheEntryOptions 时,为每个缓存条目设置默认的 Size 值为 1:
var cacheOptions = new MemoryCacheEntryOptions() { Size = 1 };
这个修改确保了当 SizeLimit 被设置时,每个缓存条目都有明确的 Size 值,从而避免了异常的发生。
技术深入
内存缓存大小限制机制
Microsoft 的内存缓存系统提供了基于大小的缓存限制功能,这是为了防止缓存无限制增长导致内存问题。当设置 SizeLimit 后:
- 缓存系统会跟踪所有缓存条目的总大小
- 当添加新条目可能导致总大小超过限制时,系统会根据策略淘汰旧条目
- 每个条目必须通过 Size 属性声明自己的"权重"
ABP 缓存抽象层
ABP 框架提供了统一的缓存抽象层(AbpCacheBase),内部可以适配不同的缓存实现(内存、Redis等)。这次的问题出现在内存缓存(AbpMemoryCache)实现中,它需要正确处理底层 MemoryCache 的特定要求。
最佳实践建议
- 当使用内存缓存大小限制时,应该为不同类型的缓存数据合理设置 Size 值
- 对于简单的缓存条目,Size=1 是合理的默认值
- 对于较大的缓存对象,应该根据实际内存占用设置适当的 Size 值
- 定期监控缓存命中率和淘汰情况,优化 SizeLimit 和各个条目的 Size 配置
总结
这个问题展示了框架底层实现细节的重要性。ABP 作为高层抽象框架,需要妥善处理底层组件(MemoryCache)的特定要求。通过这次修复,ABP 框架更好地支持了内存缓存大小限制功能,为开发者提供了更灵活的缓存配置选项。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00