OpenVINO 2025.0发布:全面升级AI推理与生成能力
作为英特尔推出的开源深度学习推理工具包,OpenVINO(Open Visual Inference and Neural Network Optimization)一直致力于为开发者提供高效的AI模型部署解决方案。最新发布的2025.0版本在生成式AI支持、大语言模型优化以及硬件适配性方面都带来了显著提升,进一步巩固了其在边缘计算和云端推理领域的领先地位。
生成式AI能力的全面扩展
2025.0版本显著增强了生成式AI的支持范围。新增了对Qwen 2.5、Deepseek-R1-Distill-Llama-8B、DeepSeek-R1-Distill-Qwen-7B、DeepSeek-R1-Distill-Qwen-1.5B以及FLUX.1 Schnell和FLUX.1 Dev等模型的支持,为开发者提供了更丰富的模型选择。
Whisper语音识别模型在本版本中获得了全方位的性能提升。无论是在CPU、集成GPU还是独立GPU上运行,通过GenAI API都能获得更优的推理效率。特别值得一提的是,新版本引入了NPU对torch.compile的预览支持,开发者现在可以使用OpenVINO后端在NPU上运行PyTorch API,这为TorchVision、Timm和TorchBench等库中的300多个深度学习模型开辟了新的硬件加速途径。
大语言模型优化与创新功能
针对日益流行的大语言模型应用场景,2025.0版本引入了多项创新技术。预览版的Prompt Lookup功能通过有效利用预定义提示词显著降低了LLM的第二令牌延迟,这对于需要快速响应的对话系统尤为重要。
图像处理方面,GenAI API新增了图像修复(inpainting)功能预览。这项技术能够根据指定修改生成逼真内容,并实现与原始图像的无缝融合,为图像编辑和内容创作提供了强大工具。
在模型压缩技术方面,2025.0版本为CPU上的INT8量化启用了非对称KV缓存压缩。这项技术特别适用于处理长提示词场景,能够有效降低内存消耗并改善第二令牌延迟,但需要用户显式指定使用。
跨平台部署能力增强
硬件支持方面,新版本添加了对英特尔酷睿Ultra 200H系列处理器(代号Arrow Lake-H)的支持。OpenVINO与Triton推理服务器的集成让开发者能够在英特尔CPU上获得更优的模型服务性能。
对于Keras用户,预览版的OpenVINO后端集成允许直接在Keras 3工作流中利用OpenVINO的性能优化,在各类计算设备上实现更快的AI推理。同时,OpenVINO模型服务器现在支持原生Windows Server部署,消除了容器开销并简化了GPU部署流程。
兼容性与未来规划
随着功能的不断演进,2025.0版本也进行了一些兼容性调整。OpenVINO存档名称中的传统前缀已被移除,Python API的运行时命名空间被标记为弃用并计划在2026.0版本中移除。NNCF工具包中的create_compressed_model()方法也被弃用,推荐使用nncf.quantize()方法进行PyTorch和TensorFlow模型的量化感知训练。
总体而言,OpenVINO 2025.0通过扩展模型支持、优化推理性能和完善部署生态,为AI开发者提供了更强大、更灵活的工具集。无论是生成式AI应用、大语言模型部署还是跨平台推理解决方案,这个版本都带来了值得期待的技术进步。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00