AFL++项目中CI持续模糊测试的最佳实践
2025-06-06 11:55:47作者:邵娇湘
概述
在软件开发过程中,持续集成(CI)环境下的模糊测试(Fuzzing)是一个复杂但极具价值的工作。本文将以AFL++项目为例,深入探讨如何在CI环境中高效实施模糊测试,特别是针对SQL解析器这类需要不断更新输入语料库的场景。
模糊测试在CI环境中的挑战
传统CI环境下的模糊测试面临几个关键挑战:
-
语料库管理问题:当被测系统(如SQL数据库)不断演进时,支持的语法和函数会不断增加,需要定期更新输入语料库。
-
测试连续性:CI作业通常是短暂的,如何在多次运行间保持测试的连续性,避免每次都从头开始。
-
效率问题:如何在有限的计算资源下最大化模糊测试的效果。
AFL++的恢复机制
AFL++提供了fastresume.bin机制来支持测试会话的恢复,但需要注意以下几点:
-
二进制一致性:只有当目标二进制文件未重新编译时,
fastresume.bin才有效。如果二进制文件发生变化,AFL++会检测到变化并执行重新校准,忽略fastresume.bin中的数据。 -
新种子添加:在恢复会话的同时添加新种子,可以使用
afl-addseeds工具将新种子添加到现有的输出目录中。
推荐的CI模糊测试策略
基于实践经验,我们推荐以下策略:
-
分离模糊测试与CI流程:直接在CI中进行模糊测试通常效果不佳,因为:
- 发现的崩溃可能与PR中的变更无关,导致开发者困扰
- CI时间有限,长时间的模糊测试会延迟合并流程
-
建立独立的模糊测试流程:
- 定期(每日/每周)重建目标进行模糊测试
- 维护并持续更新语料库
- 在已有基础上重启模糊器
-
语料库管理:
- 将语料库与测试工具放在同一项目仓库中
- 采用增量更新策略,而非每次完全重新播种
具体实施建议
对于SQL解析器的模糊测试场景:
-
种子管理:
- 维护一个基础语料库,包含各种支持的查询
- 当数据库新增语法/函数时,添加相应的示例查询
-
会话恢复:
- 使用
afl-fuzz -i -命令恢复之前的会话 - 通过
afl-addseeds添加新种子
- 使用
-
结果处理:
- 定期将崩溃数据上传到专门的分析存储
- 建立自动化分析流程,筛选有意义的崩溃
结论
在CI环境中实施有效的模糊测试需要精心设计的策略。通过理解AFL++的恢复机制,建立独立的模糊测试流程,并采用合理的语料库管理方法,可以在保证开发效率的同时最大化模糊测试的效果。特别对于像SQL解析器这样不断演进的目标,增量式的测试策略尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896