Fourier Feature Networks 使用教程
1. 项目介绍
Fourier Feature Networks 是一个开源项目,旨在通过傅里叶特征映射(Fourier feature mapping)来提升多层感知机(MLP)在低维问题域中学习高频函数的能力。该项目由 Matthew Tancik、Pratul P. Srinivasan、Ben Mildenhall 等人开发,并在 NeurIPS 2020 上发表了相关论文。
傅里叶特征映射通过将输入点映射到一个高维特征空间,使得 MLP 能够更好地学习高频函数。这一方法在计算机视觉和图形学领域取得了显著的进展,特别是在表示复杂的三维物体和场景时。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 和必要的依赖库。你可以使用以下命令安装依赖:
pip install -r requirements.txt
2.2 克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/tancik/fourier-feature-networks.git
cd fourier-feature-networks
2.3 运行示例
项目提供了一个示例 Jupyter Notebook,展示了如何使用傅里叶特征映射来训练 MLP。你可以通过以下步骤运行示例:
-
启动 Jupyter Notebook:
jupyter notebook -
打开
Demo.ipynb文件,按照 Notebook 中的步骤运行代码。
2.4 核心代码示例
以下是一个简单的代码示例,展示了如何使用傅里叶特征映射来训练 MLP:
import numpy as np
import torch
from fourier_feature_networks import FourierFeatureMapping
# 定义输入数据
input_points = np.random.rand(100, 2)
# 定义傅里叶特征映射
fourier_mapping = FourierFeatureMapping(input_dim=2, output_dim=128)
# 映射输入数据
mapped_points = fourier_mapping(input_points)
# 定义MLP模型
model = torch.nn.Sequential(
torch.nn.Linear(128, 64),
torch.nn.ReLU(),
torch.nn.Linear(64, 1)
)
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(100):
optimizer.zero_grad()
output = model(mapped_points)
loss = torch.nn.MSELoss()(output, target)
loss.backward()
optimizer.step()
3. 应用案例和最佳实践
3.1 计算机视觉
在计算机视觉中,傅里叶特征映射可以用于图像重建和超分辨率任务。通过将图像的像素坐标映射到高维空间,MLP 能够更好地捕捉图像中的高频细节。
3.2 图形学
在图形学中,傅里叶特征映射可以用于三维物体的表示和渲染。通过将三维坐标映射到高维空间,MLP 能够更准确地表示复杂的三维几何结构。
3.3 最佳实践
- 选择合适的特征维度:特征维度的选择对模型的性能有显著影响。通常,较高的特征维度可以捕捉更多的高频信息,但也会增加计算复杂度。
- 调整傅里叶特征的频率:通过调整傅里叶特征的频率,可以控制模型的拟合能力和泛化能力。
4. 典型生态项目
4.1 JAX
JAX 是一个用于高性能数值计算的库,特别适合用于机器学习和深度学习。Fourier Feature Networks 项目使用了 JAX 来实现高效的计算。
4.2 Neural Tangents
Neural Tangents 是一个用于研究神经网络训练动态的库,提供了对神经切线核(NTK)的计算和分析工具。Fourier Feature Networks 项目利用 Neural Tangents 来分析和优化模型的性能。
4.3 NeRF
NeRF(Neural Radiance Fields)是一个用于三维场景表示的项目,通过使用 MLP 来表示场景的辐射场。Fourier Feature Networks 的思想可以应用于 NeRF,以提升其表示高频细节的能力。
通过以上模块的介绍,你应该能够快速上手 Fourier Feature Networks 项目,并在实际应用中取得良好的效果。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00