Apache APISIX Prometheus插件在高负载场景下的CPU异常问题分析
2025-05-15 22:02:29作者:胡唯隽
Apache APISIX作为云原生API网关,其性能表现直接影响整个系统的稳定性。近期在Kubernetes环境中部署APISIX 3.8.0版本时,发现了一个值得关注的性能问题:当启用Prometheus插件后,在高并发测试场景下会出现CPU持续满载的异常现象。
问题现象
在Kubernetes集群中部署的APISIX实例配置为4核CPU和8GB内存的资源限制。当启用Prometheus监控插件并进行压力测试时,即使测试结束后,APISIX Pod的CPU使用率仍会保持100%的高负载状态,必须通过删除Pod才能恢复正常。
通过对比测试发现,在不启用Prometheus插件的情况下,相同的测试条件可以达到12429.77 QPS的高吞吐量,而启用插件后性能骤降至仅18.69 QPS,差距显著。
问题复现与验证
使用wrk工具模拟高并发场景进行测试验证:
wrk -t8 -c500 -d60s -s ./get.lua http://10.252.228.254:61160/infra/health/ping
测试结果显示:
- 启用Prometheus插件时:18.69请求/秒,CPU持续满载
- 禁用Prometheus插件时:12429.77请求/秒,CPU表现正常
技术分析
Prometheus插件作为APISIX的核心监控组件,其设计初衷是提供丰富的指标数据采集功能。但在实际使用中,特别是在高并发场景下,可能存在以下潜在问题:
- 指标收集开销:插件需要对每个请求进行指标统计和记录,这会增加额外的CPU计算负担
- 内存分配压力:大量并发请求会导致临时指标数据的内存分配频繁
- 锁竞争问题:多worker进程间共享指标数据可能引发锁竞争
- 指标聚合成本:Prometheus格式的指标需要定期聚合计算
解决方案建议
针对这一问题,可以考虑以下优化方向:
- 调整采样率:对于高流量场景,可配置采样率降低指标收集频率
- 优化插件配置:精简收集的指标数量,只保留关键业务指标
- 资源隔离:为Prometheus插件分配独立的worker或线程
- 版本升级:检查新版本是否已修复类似性能问题
- 监控策略优化:考虑使用批处理方式上报指标,而非实时处理
总结
APISIX的Prometheus插件在高并发场景下可能成为性能瓶颈,这提醒我们在生产环境启用监控功能时需要谨慎评估性能影响。建议在实际部署前进行充分的压力测试,根据业务特点合理配置监控策略,在可观测性和性能之间找到平衡点。
对于关键业务系统,可以考虑采用渐进式策略:先在小规模流量下验证监控组件的性能表现,确认无异常后再逐步扩大监控范围。同时,保持对APISIX新版本的关注,及时获取性能优化改进。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
249
2.48 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
88
119
暂无简介
Dart
548
119
React Native鸿蒙化仓库
JavaScript
217
298
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
126
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
356
1.75 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
153
204