Apache APISIX Prometheus插件在高负载场景下的CPU异常问题分析
2025-05-15 22:44:40作者:胡唯隽
Apache APISIX作为云原生API网关,其性能表现直接影响整个系统的稳定性。近期在Kubernetes环境中部署APISIX 3.8.0版本时,发现了一个值得关注的性能问题:当启用Prometheus插件后,在高并发测试场景下会出现CPU持续满载的异常现象。
问题现象
在Kubernetes集群中部署的APISIX实例配置为4核CPU和8GB内存的资源限制。当启用Prometheus监控插件并进行压力测试时,即使测试结束后,APISIX Pod的CPU使用率仍会保持100%的高负载状态,必须通过删除Pod才能恢复正常。
通过对比测试发现,在不启用Prometheus插件的情况下,相同的测试条件可以达到12429.77 QPS的高吞吐量,而启用插件后性能骤降至仅18.69 QPS,差距显著。
问题复现与验证
使用wrk工具模拟高并发场景进行测试验证:
wrk -t8 -c500 -d60s -s ./get.lua http://10.252.228.254:61160/infra/health/ping
测试结果显示:
- 启用Prometheus插件时:18.69请求/秒,CPU持续满载
- 禁用Prometheus插件时:12429.77请求/秒,CPU表现正常
技术分析
Prometheus插件作为APISIX的核心监控组件,其设计初衷是提供丰富的指标数据采集功能。但在实际使用中,特别是在高并发场景下,可能存在以下潜在问题:
- 指标收集开销:插件需要对每个请求进行指标统计和记录,这会增加额外的CPU计算负担
- 内存分配压力:大量并发请求会导致临时指标数据的内存分配频繁
- 锁竞争问题:多worker进程间共享指标数据可能引发锁竞争
- 指标聚合成本:Prometheus格式的指标需要定期聚合计算
解决方案建议
针对这一问题,可以考虑以下优化方向:
- 调整采样率:对于高流量场景,可配置采样率降低指标收集频率
- 优化插件配置:精简收集的指标数量,只保留关键业务指标
- 资源隔离:为Prometheus插件分配独立的worker或线程
- 版本升级:检查新版本是否已修复类似性能问题
- 监控策略优化:考虑使用批处理方式上报指标,而非实时处理
总结
APISIX的Prometheus插件在高并发场景下可能成为性能瓶颈,这提醒我们在生产环境启用监控功能时需要谨慎评估性能影响。建议在实际部署前进行充分的压力测试,根据业务特点合理配置监控策略,在可观测性和性能之间找到平衡点。
对于关键业务系统,可以考虑采用渐进式策略:先在小规模流量下验证监控组件的性能表现,确认无异常后再逐步扩大监控范围。同时,保持对APISIX新版本的关注,及时获取性能优化改进。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878