Chainlit项目中实现人机交互代理应用的技术探讨
2025-05-25 09:54:32作者:柏廷章Berta
概述
在当今AI应用开发领域,构建具有人机交互能力的代理系统已成为一个重要方向。Chainlit作为一个新兴的对话应用框架,如何支持这类需求值得深入探讨。本文将分析几种主流框架的人机交互实现方式,并介绍在Chainlit中的实践方案。
人机交互代理的应用场景
现代AI代理系统常常需要在特定环节引入人类判断,例如:
- 当代理无法确定最佳行动方案时
- 需要人类确认敏感操作时
- 获取领域专家知识补充时
这种"人在回路中"(Human-in-the-loop)的设计模式能显著提升系统的可靠性和实用性。
主流框架的实现方式
LangGraph的实现
LangGraph通过专门的节点类型支持人机交互,开发者可以标记需要人工介入的节点,系统会在执行到这些节点时暂停并等待用户输入。
LlamaIndex的实现
LlamaIndex在其代理运行器中内置了控制机制,允许开发者在特定步骤插入人工审核点,确保关键决策经过人工确认。
AutoGen的实现
微软的AutoGen框架提供了明确的人机交互API,开发者可以定义代理在何种情况下需要寻求人工帮助。
Chainlit中的实现方案
虽然Chainlit目前没有原生的人机交互抽象,但可以通过以下方式实现类似功能:
1. 使用AskUserMessage工具
开发者可以创建一个自定义工具函数,利用Chainlit的AskUserMessage功能获取用户输入:
@tool("获取人工输入")
def ask_human(question: str) -> str:
"""向用户请求反馈或后续问题"""
human_response = run_sync(
cl.AskUserMessage(content=f'{question}').send()
)
if human_response:
return human_response['output']
这种方法简单直接,适合大多数基础场景。
2. 与LangGraph集成
当与LangGraph配合使用时,可以采用中断机制:
graph = builder.compile(interrupt_before=["ask_human"])
def ask_human(state):
pass
builder.add_node("ask_human", ask_human)
这种模式下,LangGraph会在执行到特定节点前暂停,开发者可以在此处调用Chainlit的交互功能获取用户输入。
技术实现要点
- 异步处理:必须使用run_sync正确处理异步调用
- 状态管理:需要妥善保存和恢复代理状态
- 超时处理:应考虑用户无响应的情况
- 上下文传递:确保用户输入能正确返回到代理流程中
最佳实践建议
- 明确标识需要人工介入的场景,避免过度依赖
- 设计清晰的用户提示信息,说明需要提供什么信息
- 考虑实现撤销或重新输入机制
- 记录人机交互历史用于后续分析优化
未来展望
随着Agentic应用模式的普及,Chainlit有望提供更原生的人机交互支持,可能包括:
- 标准化的中断/恢复机制
- 内置的审批流程
- 可视化的人机协作界面
- 更细粒度的权限控制
当前开发者虽然需要自行实现部分功能,但通过合理的架构设计,已经能够在Chainlit上构建功能完善的人机协作应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896