Pinkfish 开源项目教程
2024-09-18 16:47:16作者:裘晴惠Vivianne
1. 项目介绍
Pinkfish 是一个基于 Python 的开源项目,旨在提供一个简单易用的金融数据分析框架。它支持多种金融数据源的接入,并提供了丰富的数据处理和分析工具,适用于量化交易、金融研究等领域。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 Pinkfish:
pip install git+https://github.com/fja05680/pinkfish.git
2.2 快速启动示例
以下是一个简单的示例,展示如何使用 Pinkfish 获取股票数据并进行基本的分析:
import pinkfish as pf
# 初始化 Pinkfish
pf.initialize()
# 获取股票数据
ticker = 'AAPL'
start_date = '2020-01-01'
end_date = '2021-01-01'
data = pf.fetch_data(ticker, start_date, end_date)
# 打印数据
print(data.head())
# 计算简单移动平均线
data['SMA'] = data['Close'].rolling(window=20).mean()
# 绘制图表
pf.plot(data, title=f'{ticker} Stock Price with SMA')
3. 应用案例和最佳实践
3.1 量化交易策略
Pinkfish 可以用于开发和回测量化交易策略。例如,你可以使用 Pinkfish 实现一个简单的均值回归策略:
def mean_reversion_strategy(data, sma_window=20, threshold=1.5):
data['SMA'] = data['Close'].rolling(window=sma_window).mean()
data['Deviation'] = (data['Close'] - data['SMA']) / data['SMA']
data['Signal'] = 0
data.loc[data['Deviation'] > threshold, 'Signal'] = -1
data.loc[data['Deviation'] < -threshold, 'Signal'] = 1
return data
# 应用策略
strategy_data = mean_reversion_strategy(data)
# 绘制信号图
pf.plot(strategy_data, title='Mean Reversion Strategy Signals')
3.2 金融数据分析
Pinkfish 还可以用于金融数据的分析和可视化。例如,你可以使用 Pinkfish 分析股票的波动性:
import numpy as np
# 计算波动率
data['Returns'] = data['Close'].pct_change()
data['Volatility'] = data['Returns'].rolling(window=20).std()
# 绘制波动率图
pf.plot(data['Volatility'], title='Stock Volatility')
4. 典型生态项目
4.1 Zipline
Zipline 是一个流行的开源回测框架,与 Pinkfish 结合使用可以实现更复杂的量化交易策略。你可以使用 Zipline 进行策略的回测和优化。
4.2 Pandas
Pinkfish 的数据处理功能依赖于 Pandas,因此你可以使用 Pandas 进行更高级的数据操作和分析。
4.3 Matplotlib
Pinkfish 的绘图功能基于 Matplotlib,你可以使用 Matplotlib 进行自定义的可视化。
通过结合这些生态项目,你可以构建一个强大的金融数据分析和量化交易平台。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
214
288