CoEx:实时立体匹配的革新者
2024-09-22 15:34:34作者:舒璇辛Bertina
项目介绍
CoEx 是一个基于 PyTorch 实现的立体匹配算法,由韩国科学技术院(KAIST)的 MSC Lab 和 RVC Lab 联合开发。该项目在 2021 年的 IEEE/RSJ 国际智能机器人与系统会议上发表,论文标题为《Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation》。CoEx 通过引入 Guided Cost Volume Excitation(GCE)和 top-k soft-argmax 视差回归技术,实现了实时且精确的立体匹配。
项目技术分析
CoEx 的核心技术包括:
- Guided Cost Volume Excitation (GCE):通过引导成本体积的激发,增强了立体匹配的准确性。
- Top-k Soft-Argmax 视差回归:改进了视差回归的精度,使得模型在处理复杂场景时表现更为出色。
此外,CoEx 还采用了以下技术细节:
- 模型训练:模型在 SceneFlow 数据集上进行了重新训练,使用了 20 个 epoch,前 15 个 epoch 学习率为 0.001,后 5 个 epoch 学习率为 0.0001。训练过程中未使用 Stochastic Weight Averaging (SWA) 技术,批量大小为 8,精度为 fp16。
- 数据集:支持 KITTI 和 SceneFlow 数据集,确保了模型在不同数据集上的泛化能力。
项目及技术应用场景
CoEx 适用于以下场景:
- 自动驾驶:实时立体匹配对于自动驾驶车辆的障碍物检测和路径规划至关重要。
- 机器人视觉:机器人需要实时感知周围环境,立体匹配技术可以帮助机器人更准确地理解其环境。
- 增强现实:在增强现实应用中,精确的立体匹配可以提高虚拟对象与现实世界的融合度。
项目特点
- 实时性:CoEx 能够在实时场景中高效运行,满足自动驾驶和机器人视觉等应用的需求。
- 高精度:通过 GCE 和 top-k soft-argmax 视差回归技术,CoEx 在立体匹配任务中表现出色,显著降低了 End-Point-Error (EPE)。
- 易用性:项目提供了详细的安装指南和数据集准备说明,用户可以轻松上手。
- 开源社区支持:CoEx 是一个开源项目,用户可以自由使用、修改和贡献代码,社区的支持也使得项目不断进步。
结语
CoEx 不仅在技术上实现了突破,还为实时立体匹配的应用提供了强大的工具。无论你是研究者还是开发者,CoEx 都值得你一试。快来体验 CoEx 带来的实时立体匹配新体验吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76