如何在Grafana Tempo中优化metrics_generator配置
背景介绍
Grafana Tempo是一个开源的分布式追踪系统,它提供了metrics_generator功能,可以从追踪数据中生成服务拓扑图(serviceGraph)和跨度指标(spanmetrics)。这些生成的指标对于监控和分析系统性能非常有用。
问题分析
在实际使用中,用户可能会遇到以下情况:
- 已经通过OpenTelemetry Collector生成了serviceGraph和spanmetrics指标
- 在Grafana中启用了metrics_generator以使用traces-drilldown功能
- 需要避免重复生成相同的指标数据
这种情况下,如果不进行适当配置,会导致资源浪费和指标重复。
配置优化方案
默认行为
metrics_generator的处理器默认是禁用的。除非在租户覆盖配置中明确启用,否则Tempo不会生成服务拓扑图或跨度指标。
验证指标生成
可以通过检查以下指标来确认metrics_generator是否在生成指标:
tempo_metrics_generator_processor_service_graphs_edgestempo_metrics_generator_registry_active_series
如果这些指标存在且非零值,说明metrics_generator正在工作。
配置调整方法
-
完全禁用metrics_generator:如果不需生成任何指标,可以完全移除metrics_generator配置部分。
-
选择性禁用特定处理器:如果只需要部分功能,可以在租户覆盖配置中指定需要的处理器。
-
优化现有配置:对于已经配置了metrics_generator的情况,可以通过调整处理器列表来减少不必要的指标生成。
最佳实践建议
-
避免重复生成:如果已经通过其他方式(如OpenTelemetry Collector)生成了相同指标,应在Tempo配置中禁用相应的处理器。
-
合理设置处理器:根据实际需求选择启用
service-graphs或span-metrics处理器,而不是全部启用。 -
监控资源使用:定期检查metrics_generator的资源使用情况,确保不会对系统性能造成过大影响。
配置示例
以下是一个优化后的配置示例,只启用了必要的处理器:
metrics_generator:
metrics_ingestion_time_range_slack: 30s
registry:
collection_interval: 15s
external_labels: {}
stale_duration: 15m
ring:
kvstore:
store: memberlist
storage:
path: /var/tempo/wal
remote_write: []
remote_write_add_org_id_header: true
remote_write_flush_deadline: 1m
traces_storage:
path: /var/tempo/traces
processor:
local_blocks:
filter_server_spans: false
flush_to_storage: true
overrides:
per_tenant_override_config: /runtime-config/overrides.yaml
metrics_generator_processors: ['local-blocks'] # 只启用必要的处理器
总结
合理配置Grafana Tempo的metrics_generator功能可以有效避免指标重复生成,减少资源消耗。通过理解各处理器的功能并根据实际需求进行配置,可以构建一个高效、可靠的监控系统。建议在部署前充分测试不同配置下的系统表现,找到最适合自己业务场景的配置方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00