如何在Grafana Tempo中优化metrics_generator配置
背景介绍
Grafana Tempo是一个开源的分布式追踪系统,它提供了metrics_generator功能,可以从追踪数据中生成服务拓扑图(serviceGraph)和跨度指标(spanmetrics)。这些生成的指标对于监控和分析系统性能非常有用。
问题分析
在实际使用中,用户可能会遇到以下情况:
- 已经通过OpenTelemetry Collector生成了serviceGraph和spanmetrics指标
- 在Grafana中启用了metrics_generator以使用traces-drilldown功能
- 需要避免重复生成相同的指标数据
这种情况下,如果不进行适当配置,会导致资源浪费和指标重复。
配置优化方案
默认行为
metrics_generator的处理器默认是禁用的。除非在租户覆盖配置中明确启用,否则Tempo不会生成服务拓扑图或跨度指标。
验证指标生成
可以通过检查以下指标来确认metrics_generator是否在生成指标:
tempo_metrics_generator_processor_service_graphs_edgestempo_metrics_generator_registry_active_series
如果这些指标存在且非零值,说明metrics_generator正在工作。
配置调整方法
-
完全禁用metrics_generator:如果不需生成任何指标,可以完全移除metrics_generator配置部分。
-
选择性禁用特定处理器:如果只需要部分功能,可以在租户覆盖配置中指定需要的处理器。
-
优化现有配置:对于已经配置了metrics_generator的情况,可以通过调整处理器列表来减少不必要的指标生成。
最佳实践建议
-
避免重复生成:如果已经通过其他方式(如OpenTelemetry Collector)生成了相同指标,应在Tempo配置中禁用相应的处理器。
-
合理设置处理器:根据实际需求选择启用
service-graphs或span-metrics处理器,而不是全部启用。 -
监控资源使用:定期检查metrics_generator的资源使用情况,确保不会对系统性能造成过大影响。
配置示例
以下是一个优化后的配置示例,只启用了必要的处理器:
metrics_generator:
metrics_ingestion_time_range_slack: 30s
registry:
collection_interval: 15s
external_labels: {}
stale_duration: 15m
ring:
kvstore:
store: memberlist
storage:
path: /var/tempo/wal
remote_write: []
remote_write_add_org_id_header: true
remote_write_flush_deadline: 1m
traces_storage:
path: /var/tempo/traces
processor:
local_blocks:
filter_server_spans: false
flush_to_storage: true
overrides:
per_tenant_override_config: /runtime-config/overrides.yaml
metrics_generator_processors: ['local-blocks'] # 只启用必要的处理器
总结
合理配置Grafana Tempo的metrics_generator功能可以有效避免指标重复生成,减少资源消耗。通过理解各处理器的功能并根据实际需求进行配置,可以构建一个高效、可靠的监控系统。建议在部署前充分测试不同配置下的系统表现,找到最适合自己业务场景的配置方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00