如何在Grafana Tempo中优化metrics_generator配置
背景介绍
Grafana Tempo是一个开源的分布式追踪系统,它提供了metrics_generator功能,可以从追踪数据中生成服务拓扑图(serviceGraph)和跨度指标(spanmetrics)。这些生成的指标对于监控和分析系统性能非常有用。
问题分析
在实际使用中,用户可能会遇到以下情况:
- 已经通过OpenTelemetry Collector生成了serviceGraph和spanmetrics指标
- 在Grafana中启用了metrics_generator以使用traces-drilldown功能
- 需要避免重复生成相同的指标数据
这种情况下,如果不进行适当配置,会导致资源浪费和指标重复。
配置优化方案
默认行为
metrics_generator的处理器默认是禁用的。除非在租户覆盖配置中明确启用,否则Tempo不会生成服务拓扑图或跨度指标。
验证指标生成
可以通过检查以下指标来确认metrics_generator是否在生成指标:
tempo_metrics_generator_processor_service_graphs_edgestempo_metrics_generator_registry_active_series
如果这些指标存在且非零值,说明metrics_generator正在工作。
配置调整方法
-
完全禁用metrics_generator:如果不需生成任何指标,可以完全移除metrics_generator配置部分。
-
选择性禁用特定处理器:如果只需要部分功能,可以在租户覆盖配置中指定需要的处理器。
-
优化现有配置:对于已经配置了metrics_generator的情况,可以通过调整处理器列表来减少不必要的指标生成。
最佳实践建议
-
避免重复生成:如果已经通过其他方式(如OpenTelemetry Collector)生成了相同指标,应在Tempo配置中禁用相应的处理器。
-
合理设置处理器:根据实际需求选择启用
service-graphs或span-metrics处理器,而不是全部启用。 -
监控资源使用:定期检查metrics_generator的资源使用情况,确保不会对系统性能造成过大影响。
配置示例
以下是一个优化后的配置示例,只启用了必要的处理器:
metrics_generator:
metrics_ingestion_time_range_slack: 30s
registry:
collection_interval: 15s
external_labels: {}
stale_duration: 15m
ring:
kvstore:
store: memberlist
storage:
path: /var/tempo/wal
remote_write: []
remote_write_add_org_id_header: true
remote_write_flush_deadline: 1m
traces_storage:
path: /var/tempo/traces
processor:
local_blocks:
filter_server_spans: false
flush_to_storage: true
overrides:
per_tenant_override_config: /runtime-config/overrides.yaml
metrics_generator_processors: ['local-blocks'] # 只启用必要的处理器
总结
合理配置Grafana Tempo的metrics_generator功能可以有效避免指标重复生成,减少资源消耗。通过理解各处理器的功能并根据实际需求进行配置,可以构建一个高效、可靠的监控系统。建议在部署前充分测试不同配置下的系统表现,找到最适合自己业务场景的配置方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00