Strip-R-CNN项目教程:自定义训练运行时配置详解
2025-06-04 12:35:21作者:魏献源Searcher
前言
在目标检测模型的训练过程中,优化策略和训练流程的配置对模型性能有着至关重要的影响。本文将深入讲解如何在Strip-R-CNN项目中自定义训练运行时配置,包括优化器设置、训练计划调整、工作流定义以及钩子函数的定制。
优化器配置详解
使用内置优化器
Strip-R-CNN支持所有PyTorch原生优化器,配置方式简单直观。例如,要使用Adam优化器:
optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
关键参数说明:
type:指定优化器类型(SGD/Adam等)lr:基础学习率,通常设置在0.01-0.0001之间weight_decay:权重衰减系数,用于防止过拟合
自定义优化器实现
当需要实现特殊优化策略时,可以创建自定义优化器:
- 定义优化器类:
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
def __init__(self, a, b, c):
# 实现优化器逻辑
- 注册优化器:
在模块的
__init__.py中导入新定义的优化器类,或通过配置文件动态导入:
custom_imports = dict(imports=['mmrotate.core.optimizer.my_optimizer'], allow_failed_imports=False)
- 配置使用:
optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)
高级优化技巧
- 梯度裁剪:
optimizer_config = dict(
grad_clip=dict(max_norm=35, norm_type=2))
- 动量调度: 配合学习率调度器使用,可显著加速收敛:
momentum_config = dict(
policy='cyclic',
target_ratio=(0.85/0.95, 1),
cyclic_times=1,
step_ratio_up=0.4)
训练计划定制
学习率调度策略
Strip-R-CNN支持多种学习率调整策略:
- Poly策略:
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
- 余弦退火:
lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0/10,
min_lr_ratio=1e-5)
工作流配置
工作流定义了训练和验证的执行顺序:
workflow = [('train', 1), ('val', 1)] # 1个epoch训练后接1个epoch验证
注意事项:
- 验证阶段不会更新模型参数
total_epochs仅控制训练epoch数- 验证频率影响的是验证指标的计算时机
钩子函数定制
自定义钩子实现
- 定义钩子类:
@HOOKS.register_module()
class MyHook(Hook):
def before_run(self, runner):
# 训练前执行逻辑
def after_iter(self, runner):
# 每次迭代后执行逻辑
- 注册与使用:
custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
]
内置钩子配置
- 模型检查点:
checkpoint_config = dict(interval=1, max_keep_ckpts=5)
- 日志记录:
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
- 评估配置:
evaluation = dict(interval=1, metric='bbox')
结语
通过灵活配置优化器、训练计划、工作流和钩子函数,可以显著提升Strip-R-CNN模型的训练效率和最终性能。建议开发者根据具体任务需求,尝试不同的配置组合,并通过实验验证其效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19