Codon项目中实现Python扩展类RollingMedian的注意事项
2025-05-14 12:26:36作者:裴锟轩Denise
概述
在使用Codon项目开发Python扩展时,开发者River-Shi尝试实现一个RollingMedian类时遇到了两个关键问题:类无法导入和deque类型不支持的问题。本文将详细分析这些问题产生的原因和解决方案。
问题分析
类无法导入问题
最初实现的RollingMedian类无法从编译后的Python扩展模块中导入,错误提示为"cannot import name 'RollingMedian' from 'vec'"。
根本原因:
- 在Codon中,默认情况下类不会自动暴露给Python接口
- 需要显式声明哪些类需要与Python交互
解决方案:
- 使用
@dataclass(python=True)装饰器标记需要导出到Python的类 - 这个装饰器会生成必要的Python绑定代码
修正后的类定义应为:
@dataclass(python=True)
class RollingMedian:
# 类实现...
deque类型不支持问题
添加装饰器后,又遇到了关于deque类型的问题,错误提示"'deque[float]' object has no attribute 'from_py'"。
根本原因:
- Codon的collections.deque类型目前尚未实现Python绑定
- Python和Codon之间的类型转换需要特定的接口方法
临时解决方案:
- 使用List类型替代deque
- List类型已经完整实现了Python绑定支持
未来改进:
- Codon团队已将此功能加入TODO列表
- 预计在后续版本中会添加对deque的完整支持
完整修正代码示例
import collections
@dataclass(python=True)
class RollingMedian:
n: int
data: List[float] # 使用List替代deque
def __init__(self, n: int = 10):
self.n = n
self.data = [] # 初始化空列表
def input(self, value: float) -> float:
self.data.append(value)
if len(self.data) > self.n:
self.data.pop(0) # 手动实现队列的FIFO行为
return self.get_median()
def get_median(self) -> float:
sorted_data = sorted(self.data)
mid = len(sorted_data) // 2
if len(sorted_data) % 2 == 0:
return (sorted_data[mid - 1] + sorted_data[mid]) / 2.0
else:
return sorted_data[mid]
开发建议
- 类型选择:在Codon与Python交互的代码中,优先使用已支持绑定的基础类型
- 装饰器使用:所有需要暴露给Python的类都必须添加
@dataclass(python=True) - 功能验证:在实现复杂功能前,先用简单示例验证绑定是否正常工作
- 版本关注:关注Codon的更新日志,了解新增的Python绑定支持
总结
通过本文的分析,我们了解到在Codon项目中开发Python扩展时需要注意类的导出声明和类型兼容性问题。虽然目前某些高级容器类型如deque的支持还不完善,但通过合理的变通方法仍然可以实现所需功能。随着Codon项目的持续发展,这些限制将会逐步解除,为开发者提供更完整的Python互操作体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1