Kotlinx.Serialization实战:自定义时间戳的JSON原始类型序列化
2025-06-07 13:27:14作者:羿妍玫Ivan
在Kotlin生态中,kotlinx.serialization作为官方推荐的序列化库,其灵活的自定义序列化能力常被开发者使用。本文将通过一个典型场景——将自定义时间戳对象序列化为JSON原始数值类型(而非默认的对象结构),深入解析其实现原理。
场景需求
假设我们有一个Timestamp类型,其内部存储的是UNIX纪元起的微秒数(即毫秒值×1000)。服务端接口要求该类型必须以原始数值形式传输,而非JSON对象结构。
常见误区
许多开发者会直接使用@Serializer注解生成默认序列化器,如下所示:
@Serializer(forClass = Timestamp::class)
object TimestampSerializer : KSerializer<Timestamp> {
override fun deserialize(decoder: Decoder) {
decoder.decodeStructure(descriptor) {
Timestamp(decodeLongElement(descriptor, 0) / 1000)
}
}
// 省略serialize实现...
}
这种实现会强制将时间戳处理为JSON对象结构(如{"element":1634567890000}),而我们需要的是直接输出数值(如1634567890000)。
核心解决方案
关键在于正确配置serialDescriptor。序列化描述符决定了数据在序列化流中的结构形态。对于原始数值类型,我们需要使用PrimitiveSerialDescriptor:
@Serializer(forClass = Timestamp::class)
object TimestampSerializer : KSerializer<Timestamp> {
// 关键点:声明为LONG型原始描述符
override val descriptor = PrimitiveSerialDescriptor(
"com.example.Timestamp",
PrimitiveKind.LONG
)
override fun deserialize(decoder: Decoder): Timestamp {
// 直接解码为原始long值
return Timestamp(decoder.decodeLong() / 1000)
}
override fun serialize(encoder: Encoder, value: Timestamp) {
// 直接编码为原始long值
encoder.encodeLong(value.toInstant().toEpochMilli() * 1000L)
}
}
技术原理深度解析
-
描述符类型决定序列化形态:
StructureDescriptor对应JSON对象PrimitiveSerialDescriptor对应JSON原始值(数值/字符串/布尔值)
-
微秒与毫秒转换: 示例中
/1000和*1000L的转换处理,体现了时间单位转换的常见模式。实际业务中需根据具体协议调整。 -
IDE静态检测的局限性: 当前Kotlin插件无法验证序列化实现与描述符的匹配性,开发者需自行保证:
- 使用
PrimitiveSerialDescriptor时,必须调用decodeXXX()原始方法 - 不能使用
decodeStructure等结构化方法
- 使用
最佳实践建议
- 单元测试验证:
@Test
fun testTimestampSerialization() {
val json = Json.encodeToString(TimestampSerializer, timestamp)
assertTrue(json.toLongOrNull() != null) // 验证输出是原始数值
}
-
考虑跨平台一致性: 如果涉及多平台项目,建议将序列化逻辑放在commonMain模块中。
-
性能优化: 对于高频调用的时间戳序列化,可将serializer对象声明为单例(如示例中的object)。
通过本文的解决方案,开发者可以优雅地实现自定义类型到JSON原始值的映射,满足各类严苛的接口协议要求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
211
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319