Kotlinx.Serialization实战:自定义时间戳的JSON原始类型序列化
2025-06-07 01:55:56作者:羿妍玫Ivan
在Kotlin生态中,kotlinx.serialization作为官方推荐的序列化库,其灵活的自定义序列化能力常被开发者使用。本文将通过一个典型场景——将自定义时间戳对象序列化为JSON原始数值类型(而非默认的对象结构),深入解析其实现原理。
场景需求
假设我们有一个Timestamp类型,其内部存储的是UNIX纪元起的微秒数(即毫秒值×1000)。服务端接口要求该类型必须以原始数值形式传输,而非JSON对象结构。
常见误区
许多开发者会直接使用@Serializer注解生成默认序列化器,如下所示:
@Serializer(forClass = Timestamp::class)
object TimestampSerializer : KSerializer<Timestamp> {
override fun deserialize(decoder: Decoder) {
decoder.decodeStructure(descriptor) {
Timestamp(decodeLongElement(descriptor, 0) / 1000)
}
}
// 省略serialize实现...
}
这种实现会强制将时间戳处理为JSON对象结构(如{"element":1634567890000}),而我们需要的是直接输出数值(如1634567890000)。
核心解决方案
关键在于正确配置serialDescriptor。序列化描述符决定了数据在序列化流中的结构形态。对于原始数值类型,我们需要使用PrimitiveSerialDescriptor:
@Serializer(forClass = Timestamp::class)
object TimestampSerializer : KSerializer<Timestamp> {
// 关键点:声明为LONG型原始描述符
override val descriptor = PrimitiveSerialDescriptor(
"com.example.Timestamp",
PrimitiveKind.LONG
)
override fun deserialize(decoder: Decoder): Timestamp {
// 直接解码为原始long值
return Timestamp(decoder.decodeLong() / 1000)
}
override fun serialize(encoder: Encoder, value: Timestamp) {
// 直接编码为原始long值
encoder.encodeLong(value.toInstant().toEpochMilli() * 1000L)
}
}
技术原理深度解析
-
描述符类型决定序列化形态:
StructureDescriptor对应JSON对象PrimitiveSerialDescriptor对应JSON原始值(数值/字符串/布尔值)
-
微秒与毫秒转换: 示例中
/1000和*1000L的转换处理,体现了时间单位转换的常见模式。实际业务中需根据具体协议调整。 -
IDE静态检测的局限性: 当前Kotlin插件无法验证序列化实现与描述符的匹配性,开发者需自行保证:
- 使用
PrimitiveSerialDescriptor时,必须调用decodeXXX()原始方法 - 不能使用
decodeStructure等结构化方法
- 使用
最佳实践建议
- 单元测试验证:
@Test
fun testTimestampSerialization() {
val json = Json.encodeToString(TimestampSerializer, timestamp)
assertTrue(json.toLongOrNull() != null) // 验证输出是原始数值
}
-
考虑跨平台一致性: 如果涉及多平台项目,建议将序列化逻辑放在commonMain模块中。
-
性能优化: 对于高频调用的时间戳序列化,可将serializer对象声明为单例(如示例中的object)。
通过本文的解决方案,开发者可以优雅地实现自定义类型到JSON原始值的映射,满足各类严苛的接口协议要求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C028
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.25 K
Ascend Extension for PyTorch
Python
231
263
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869