LLMs-from-scratch项目中关于残差连接图示的修正说明
2025-05-01 21:56:19作者:董斯意
在深度学习模型设计中,残差连接(Residual Connection)是一个非常重要的概念。最近在开源项目LLMs-from-scratch的第四章"Adding shortcut connections"部分,发现了一个关于残差连接图示的技术细节问题,值得深入探讨。
原始图示的问题
原书中展示了两幅对比图:一幅是普通的深度神经网络(Deep ANN),另一幅是带有残差连接的深度神经网络。在普通深度神经网络的图示中,错误地包含了加号(+)符号,这可能会给读者造成概念上的混淆。
残差连接的正确理解
残差连接的核心思想是将输入直接"跳过"某些层,与这些层的输出相加。这种设计最早由微软研究院在2015年提出,主要解决了深层网络训练中的梯度消失问题。
在标准的深度神经网络中,数据流是顺序通过各层的:
输入 → 线性层 → GELU激活 → 线性层 → 输出
这个过程不应该有任何加法操作。
图示修正的意义
修正后的图示更加准确地反映了两种网络结构的差异:
- 普通深度神经网络:纯顺序结构,无跨层连接
- 残差网络:包含跨层加法操作,形成"短路"连接
这种视觉上的准确表达对于初学者理解残差网络的工作原理至关重要。错误的图示可能会导致读者误以为普通网络中也存在某种形式的跨层连接。
技术细节解析
残差连接在数学上可以表示为:
输出 = F(x) + x
其中:
- x是输入
- F(x)是神经网络层的变换结果
这种设计使得网络可以更容易学习恒等映射,当F(x)趋近于0时,输出仍然能保持输入的特征。这对于深层网络的训练特别有利,因为它缓解了梯度在反向传播过程中逐渐变小的问题。
对项目的影响
这个看似微小的图示修正实际上体现了开源社区对技术准确性的追求。在深度学习教育材料中,这种细节的准确性尤为重要,因为它直接关系到学习者对核心概念的理解。
通过这次修正,LLMs-from-scratch项目在讲解残差连接这一重要概念时更加严谨,有助于读者建立正确的知识体系。这也展示了开源社区通过协作不断完善技术内容的典型过程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355