LLMs-from-scratch项目中关于残差连接图示的修正说明
2025-05-01 09:18:46作者:董斯意
在深度学习模型设计中,残差连接(Residual Connection)是一个非常重要的概念。最近在开源项目LLMs-from-scratch的第四章"Adding shortcut connections"部分,发现了一个关于残差连接图示的技术细节问题,值得深入探讨。
原始图示的问题
原书中展示了两幅对比图:一幅是普通的深度神经网络(Deep ANN),另一幅是带有残差连接的深度神经网络。在普通深度神经网络的图示中,错误地包含了加号(+)符号,这可能会给读者造成概念上的混淆。
残差连接的正确理解
残差连接的核心思想是将输入直接"跳过"某些层,与这些层的输出相加。这种设计最早由微软研究院在2015年提出,主要解决了深层网络训练中的梯度消失问题。
在标准的深度神经网络中,数据流是顺序通过各层的:
输入 → 线性层 → GELU激活 → 线性层 → 输出
这个过程不应该有任何加法操作。
图示修正的意义
修正后的图示更加准确地反映了两种网络结构的差异:
- 普通深度神经网络:纯顺序结构,无跨层连接
- 残差网络:包含跨层加法操作,形成"短路"连接
这种视觉上的准确表达对于初学者理解残差网络的工作原理至关重要。错误的图示可能会导致读者误以为普通网络中也存在某种形式的跨层连接。
技术细节解析
残差连接在数学上可以表示为:
输出 = F(x) + x
其中:
- x是输入
- F(x)是神经网络层的变换结果
这种设计使得网络可以更容易学习恒等映射,当F(x)趋近于0时,输出仍然能保持输入的特征。这对于深层网络的训练特别有利,因为它缓解了梯度在反向传播过程中逐渐变小的问题。
对项目的影响
这个看似微小的图示修正实际上体现了开源社区对技术准确性的追求。在深度学习教育材料中,这种细节的准确性尤为重要,因为它直接关系到学习者对核心概念的理解。
通过这次修正,LLMs-from-scratch项目在讲解残差连接这一重要概念时更加严谨,有助于读者建立正确的知识体系。这也展示了开源社区通过协作不断完善技术内容的典型过程。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217