Strands Agents 实时响应流处理技术详解
2025-06-03 10:12:13作者:申梦珏Efrain
引言
在现代人工智能应用开发中,实时处理和展示大语言模型(LLM)的响应变得越来越重要。Strands Agents项目提供了两种强大的实时响应处理机制:异步迭代器和回调处理器。本文将深入解析这两种技术的工作原理、适用场景以及实际应用方法。
技术概览
Strands Agents提供了两种处理实时响应的主要方法:
- 异步迭代器(Async Iterators):适用于FastAPI、aiohttp等异步框架,通过
stream_async方法返回异步迭代器 - 回调处理器(Callback Handlers):允许在代理执行过程中拦截和处理事件,实现实时监控、自定义输出格式等功能
环境准备
系统要求
- Python 3.10+
- AWS账号
- Amazon Bedrock上已启用Anthropic Claude 3.7
依赖安装
!pip install -r requirements.txt
基础导入
import asyncio
import httpx
import nest_asyncio
import uvicorn
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from strands import Agent, tool
from strands_tools import calculator
方法一:异步迭代器实现流式响应
核心概念
异步迭代器是Python异步编程的重要特性,特别适合处理长时间运行的流式数据。在Strands Agents中,stream_async方法返回的异步迭代器能够实时产生代理执行过程中的各种事件。
基础实现
nest_asyncio.apply() # 允许嵌套异步事件循环
agent = Agent(tools=[calculator], callback_handler=None)
async def process_streaming_response():
agent_stream = agent.stream_async("Calculate 2+2")
async for event in agent_stream:
print(event)
asyncio.run(process_streaming_response())
事件生命周期分析
通过增强的打印格式,我们可以清晰地观察代理执行的生命周期:
async def process_streaming_response():
agent_stream = agent.stream_async("What is the capital of France and what is 42+7?")
async for event in agent_stream:
if event.get("init_event_loop", False):
print("🔄 Event loop initialized")
elif event.get("start_event_loop", False):
print("▶️ Event loop cycle starting")
elif event.get("start", False):
print("📝 New cycle started")
elif "message" in event:
print(f"📬 New message created: {event['message']['role']}")
elif event.get("complete", False):
print("✅ Cycle completed")
elif event.get("force_stop", False):
print(f"🛑 Event loop force-stopped: {event.get('force_stop_reason', 'unknown reason')}")
if "current_tool_use" in event and event["current_tool_use"].get("name"):
tool_name = event["current_tool_use"]["name"]
print(f"🔧 Using tool: {tool_name}")
if "data" in event:
data_snippet = event["data"][:20] + ("..." if len(event["data"]) > 20 else "")
print(f"📟 Text: {data_snippet}")
asyncio.run(process_streaming_response())
FastAPI集成实战
将流式响应集成到FastAPI中可以创建强大的实时API端点。我们首先扩展代理功能,添加天气预测工具:
@tool
def weather_forecast(city: str, days: int = 3) -> str:
return f"Weather forecast for {city} for the next {days} days..."
app = FastAPI()
class PromptRequest(BaseModel):
prompt: str
@app.post("/stream")
async def stream_response(request: PromptRequest):
async def generate():
agent = Agent(tools=[calculator, weather_forecast], callback_handler=None)
try:
async for event in agent.stream_async(request.prompt):
if "data" in event:
yield event["data"]
except Exception as e:
yield f"Error: {str(e)}"
return StreamingResponse(generate(), media_type="text/plain")
async def start_server():
config = uvicorn.Config(app, host="0.0.0.0", port=8001, log_level="info")
server = uvicorn.Server(config)
await server.serve()
server_task = asyncio.create_task(start_server())
await asyncio.sleep(0.1)
print("✅ Server is running at http://0.0.0.0:8001")
客户端调用示例:
async def fetch_stream():
async with httpx.AsyncClient() as client:
async with client.stream(
"POST",
"http://0.0.0.0:8001/stream",
json={"prompt": "What is weather in NYC?"},
) as response:
async for line in response.aiter_lines():
if line.strip():
print("Received:", line)
await fetch_stream()
方法二:回调处理器实现流式响应
核心概念
回调处理器提供了一种更灵活的方式来拦截和处理代理执行过程中的各种事件。这种方法特别适合需要深度定制处理逻辑的场景。
实现自定义回调处理器
def custom_callback_handler(**kwargs):
if "data" in kwargs:
print(f"MODEL OUTPUT: {kwargs['data']}")
elif "current_tool_use" in kwargs and kwargs["current_tool_use"].get("name"):
print(f"\nUSING TOOL: {kwargs['current_tool_use']['name']}")
agent = Agent(tools=[calculator], callback_handler=custom_callback_handler)
agent("Calculate 2+2")
技术对比与选型建议
| 特性 | 异步迭代器 | 回调处理器 |
|---|---|---|
| 适用场景 | 异步框架集成 | 自定义事件处理 |
| 复杂度 | 中等 | 低 |
| 灵活性 | 高 | 极高 |
| 性能 | 优 | 良 |
| 推荐用途 | API流式响应 | 监控、日志、定制输出 |
最佳实践
- 生产环境部署:在FastAPI等异步框架中优先使用异步迭代器
- 调试与监控:使用回调处理器记录详细执行日志
- 性能优化:对于长时间运行的代理,考虑结合两种方法
- 错误处理:确保流式响应中妥善处理异常情况
结语
Strands Agents提供的两种流式响应处理方法各有优势,开发者可以根据具体需求选择合适的技术方案。异步迭代器适合构建实时API,而回调处理器则提供了更细粒度的事件控制能力。掌握这两种技术将大大增强您构建高效、响应式AI应用的能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Python小说下载神器:一键获取番茄小说完整内容如何用md2pptx快速将Markdown文档转换为专业PPT演示文稿 📊京东评价自动化工具:用Python脚本解放双手的高效助手三步掌握Payload-Dumper-Android:革新性OTA提取工具的核心价值定位终极Obsidian模板配置指南:10个技巧打造高效个人知识库终极指南:5步解锁Rockchip RK3588全部潜力,快速上手Ubuntu 22.04操作系统WebPlotDigitizer 安装配置指南:从图像中提取数据的开源工具终极FDS入门指南:5步掌握火灾动力学模拟技巧高效获取无损音乐:跨平台FLAC音乐下载工具全解析终极指南:5步复现Spring Boot高危漏洞CVE-2016-1000027
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
530
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
338
401
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
885
595
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246