Strands Agents 实时响应流处理技术详解
2025-06-03 10:12:13作者:申梦珏Efrain
引言
在现代人工智能应用开发中,实时处理和展示大语言模型(LLM)的响应变得越来越重要。Strands Agents项目提供了两种强大的实时响应处理机制:异步迭代器和回调处理器。本文将深入解析这两种技术的工作原理、适用场景以及实际应用方法。
技术概览
Strands Agents提供了两种处理实时响应的主要方法:
- 异步迭代器(Async Iterators):适用于FastAPI、aiohttp等异步框架,通过
stream_async方法返回异步迭代器 - 回调处理器(Callback Handlers):允许在代理执行过程中拦截和处理事件,实现实时监控、自定义输出格式等功能
环境准备
系统要求
- Python 3.10+
- AWS账号
- Amazon Bedrock上已启用Anthropic Claude 3.7
依赖安装
!pip install -r requirements.txt
基础导入
import asyncio
import httpx
import nest_asyncio
import uvicorn
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from strands import Agent, tool
from strands_tools import calculator
方法一:异步迭代器实现流式响应
核心概念
异步迭代器是Python异步编程的重要特性,特别适合处理长时间运行的流式数据。在Strands Agents中,stream_async方法返回的异步迭代器能够实时产生代理执行过程中的各种事件。
基础实现
nest_asyncio.apply() # 允许嵌套异步事件循环
agent = Agent(tools=[calculator], callback_handler=None)
async def process_streaming_response():
agent_stream = agent.stream_async("Calculate 2+2")
async for event in agent_stream:
print(event)
asyncio.run(process_streaming_response())
事件生命周期分析
通过增强的打印格式,我们可以清晰地观察代理执行的生命周期:
async def process_streaming_response():
agent_stream = agent.stream_async("What is the capital of France and what is 42+7?")
async for event in agent_stream:
if event.get("init_event_loop", False):
print("🔄 Event loop initialized")
elif event.get("start_event_loop", False):
print("▶️ Event loop cycle starting")
elif event.get("start", False):
print("📝 New cycle started")
elif "message" in event:
print(f"📬 New message created: {event['message']['role']}")
elif event.get("complete", False):
print("✅ Cycle completed")
elif event.get("force_stop", False):
print(f"🛑 Event loop force-stopped: {event.get('force_stop_reason', 'unknown reason')}")
if "current_tool_use" in event and event["current_tool_use"].get("name"):
tool_name = event["current_tool_use"]["name"]
print(f"🔧 Using tool: {tool_name}")
if "data" in event:
data_snippet = event["data"][:20] + ("..." if len(event["data"]) > 20 else "")
print(f"📟 Text: {data_snippet}")
asyncio.run(process_streaming_response())
FastAPI集成实战
将流式响应集成到FastAPI中可以创建强大的实时API端点。我们首先扩展代理功能,添加天气预测工具:
@tool
def weather_forecast(city: str, days: int = 3) -> str:
return f"Weather forecast for {city} for the next {days} days..."
app = FastAPI()
class PromptRequest(BaseModel):
prompt: str
@app.post("/stream")
async def stream_response(request: PromptRequest):
async def generate():
agent = Agent(tools=[calculator, weather_forecast], callback_handler=None)
try:
async for event in agent.stream_async(request.prompt):
if "data" in event:
yield event["data"]
except Exception as e:
yield f"Error: {str(e)}"
return StreamingResponse(generate(), media_type="text/plain")
async def start_server():
config = uvicorn.Config(app, host="0.0.0.0", port=8001, log_level="info")
server = uvicorn.Server(config)
await server.serve()
server_task = asyncio.create_task(start_server())
await asyncio.sleep(0.1)
print("✅ Server is running at http://0.0.0.0:8001")
客户端调用示例:
async def fetch_stream():
async with httpx.AsyncClient() as client:
async with client.stream(
"POST",
"http://0.0.0.0:8001/stream",
json={"prompt": "What is weather in NYC?"},
) as response:
async for line in response.aiter_lines():
if line.strip():
print("Received:", line)
await fetch_stream()
方法二:回调处理器实现流式响应
核心概念
回调处理器提供了一种更灵活的方式来拦截和处理代理执行过程中的各种事件。这种方法特别适合需要深度定制处理逻辑的场景。
实现自定义回调处理器
def custom_callback_handler(**kwargs):
if "data" in kwargs:
print(f"MODEL OUTPUT: {kwargs['data']}")
elif "current_tool_use" in kwargs and kwargs["current_tool_use"].get("name"):
print(f"\nUSING TOOL: {kwargs['current_tool_use']['name']}")
agent = Agent(tools=[calculator], callback_handler=custom_callback_handler)
agent("Calculate 2+2")
技术对比与选型建议
| 特性 | 异步迭代器 | 回调处理器 |
|---|---|---|
| 适用场景 | 异步框架集成 | 自定义事件处理 |
| 复杂度 | 中等 | 低 |
| 灵活性 | 高 | 极高 |
| 性能 | 优 | 良 |
| 推荐用途 | API流式响应 | 监控、日志、定制输出 |
最佳实践
- 生产环境部署:在FastAPI等异步框架中优先使用异步迭代器
- 调试与监控:使用回调处理器记录详细执行日志
- 性能优化:对于长时间运行的代理,考虑结合两种方法
- 错误处理:确保流式响应中妥善处理异常情况
结语
Strands Agents提供的两种流式响应处理方法各有优势,开发者可以根据具体需求选择合适的技术方案。异步迭代器适合构建实时API,而回调处理器则提供了更细粒度的事件控制能力。掌握这两种技术将大大增强您构建高效、响应式AI应用的能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
244
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
449
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885