Trulens项目中GroundTruthAgreement反馈函数的使用问题分析
2025-07-01 06:53:26作者:吴年前Myrtle
问题背景
在使用Trulens项目进行大语言模型评估时,开发者遇到了GroundTruthAgreement反馈函数无法正常工作的问题。该反馈函数设计用于评估模型输出与标准答案之间的匹配程度,但在实际使用中却无法返回预期的评分结果。
问题现象
开发者在使用Litellm作为模型提供者时,配置了包含查询和预期响应的数据集,并通过GroundTruthAgreement反馈函数来评估模型回答的正确性。然而,在实际运行中,该反馈函数始终返回None值,而其他反馈函数如相关性评估等则能正常工作。
技术分析
数据集格式要求
经过深入分析,发现问题可能出在数据集的结构上。GroundTruthAgreement反馈函数对输入数据有严格的格式要求:
- 每个QA对必须包含"query"和"expected_response"两个键
- 键名必须完全匹配,大小写敏感
- 数据集应为字典列表形式
常见错误模式
开发者容易犯的几个典型错误包括:
- 使用"response"而非"expected_response"作为键名
- 数据集列名与要求不匹配
- 数据类型不符合预期(如从CSV读取时可能发生类型转换)
验证方法
为了验证反馈函数是否正常工作,可以采用以下最小化测试方案:
golden_set = [
{
"query": "who invented the lightbulb?",
"expected_response": "Thomas Edison",
},
{
"query": "Who is the captain of CSK team",
"expected_response": "MS Dhoni",
},
]
f_groundtruth = Feedback(
GroundTruthAgreement(golden_set, OpenAI()).agreement_measure,
name="Answer Correctness"
).on_input_output()
result = f_groundtruth(
'Who is the captain of CSK team',
'The captain's name is MS Dhoni'
)
预期应返回包含评分和标准答案的元组,如(0.9, {'ground_truth_response': 'MS Dhoni'})。
解决方案
针对这一问题,建议采取以下解决步骤:
- 确保数据集格式完全符合要求
- 在加载CSV文件后,显式检查数据结构
- 使用最小化测试用例验证功能
- 检查Trulens日志获取更详细的错误信息
最佳实践
为了避免类似问题,建议:
- 建立数据验证机制,在传入反馈函数前检查数据结构
- 为数据集处理编写单元测试
- 使用类型提示和文档字符串明确接口要求
- 在文档中突出显示关键参数要求
总结
GroundTruthAgreement反馈函数是Trulens项目中评估模型准确性的重要工具,但其对输入数据格式有严格要求。开发者在集成使用时应当特别注意数据结构的规范性,通过最小化测试和严格验证确保功能正常运作。这一案例也提醒我们,在构建AI评估系统时,清晰明确的接口文档和健全的输入验证机制至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136