Trulens项目中GroundTruthAgreement反馈函数的使用问题分析
2025-07-01 07:49:53作者:吴年前Myrtle
问题背景
在使用Trulens项目进行大语言模型评估时,开发者遇到了GroundTruthAgreement反馈函数无法正常工作的问题。该反馈函数设计用于评估模型输出与标准答案之间的匹配程度,但在实际使用中却无法返回预期的评分结果。
问题现象
开发者在使用Litellm作为模型提供者时,配置了包含查询和预期响应的数据集,并通过GroundTruthAgreement反馈函数来评估模型回答的正确性。然而,在实际运行中,该反馈函数始终返回None值,而其他反馈函数如相关性评估等则能正常工作。
技术分析
数据集格式要求
经过深入分析,发现问题可能出在数据集的结构上。GroundTruthAgreement反馈函数对输入数据有严格的格式要求:
- 每个QA对必须包含"query"和"expected_response"两个键
- 键名必须完全匹配,大小写敏感
- 数据集应为字典列表形式
常见错误模式
开发者容易犯的几个典型错误包括:
- 使用"response"而非"expected_response"作为键名
- 数据集列名与要求不匹配
- 数据类型不符合预期(如从CSV读取时可能发生类型转换)
验证方法
为了验证反馈函数是否正常工作,可以采用以下最小化测试方案:
golden_set = [
{
"query": "who invented the lightbulb?",
"expected_response": "Thomas Edison",
},
{
"query": "Who is the captain of CSK team",
"expected_response": "MS Dhoni",
},
]
f_groundtruth = Feedback(
GroundTruthAgreement(golden_set, OpenAI()).agreement_measure,
name="Answer Correctness"
).on_input_output()
result = f_groundtruth(
'Who is the captain of CSK team',
'The captain's name is MS Dhoni'
)
预期应返回包含评分和标准答案的元组,如(0.9, {'ground_truth_response': 'MS Dhoni'})。
解决方案
针对这一问题,建议采取以下解决步骤:
- 确保数据集格式完全符合要求
- 在加载CSV文件后,显式检查数据结构
- 使用最小化测试用例验证功能
- 检查Trulens日志获取更详细的错误信息
最佳实践
为了避免类似问题,建议:
- 建立数据验证机制,在传入反馈函数前检查数据结构
- 为数据集处理编写单元测试
- 使用类型提示和文档字符串明确接口要求
- 在文档中突出显示关键参数要求
总结
GroundTruthAgreement反馈函数是Trulens项目中评估模型准确性的重要工具,但其对输入数据格式有严格要求。开发者在集成使用时应当特别注意数据结构的规范性,通过最小化测试和严格验证确保功能正常运作。这一案例也提醒我们,在构建AI评估系统时,清晰明确的接口文档和健全的输入验证机制至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
288
2.59 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
604
181
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
144
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
75
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
136
57