Trulens项目中GroundTruthAgreement反馈函数的使用问题分析
2025-07-01 07:49:53作者:吴年前Myrtle
问题背景
在使用Trulens项目进行大语言模型评估时,开发者遇到了GroundTruthAgreement反馈函数无法正常工作的问题。该反馈函数设计用于评估模型输出与标准答案之间的匹配程度,但在实际使用中却无法返回预期的评分结果。
问题现象
开发者在使用Litellm作为模型提供者时,配置了包含查询和预期响应的数据集,并通过GroundTruthAgreement反馈函数来评估模型回答的正确性。然而,在实际运行中,该反馈函数始终返回None值,而其他反馈函数如相关性评估等则能正常工作。
技术分析
数据集格式要求
经过深入分析,发现问题可能出在数据集的结构上。GroundTruthAgreement反馈函数对输入数据有严格的格式要求:
- 每个QA对必须包含"query"和"expected_response"两个键
- 键名必须完全匹配,大小写敏感
- 数据集应为字典列表形式
常见错误模式
开发者容易犯的几个典型错误包括:
- 使用"response"而非"expected_response"作为键名
- 数据集列名与要求不匹配
- 数据类型不符合预期(如从CSV读取时可能发生类型转换)
验证方法
为了验证反馈函数是否正常工作,可以采用以下最小化测试方案:
golden_set = [
{
"query": "who invented the lightbulb?",
"expected_response": "Thomas Edison",
},
{
"query": "Who is the captain of CSK team",
"expected_response": "MS Dhoni",
},
]
f_groundtruth = Feedback(
GroundTruthAgreement(golden_set, OpenAI()).agreement_measure,
name="Answer Correctness"
).on_input_output()
result = f_groundtruth(
'Who is the captain of CSK team',
'The captain's name is MS Dhoni'
)
预期应返回包含评分和标准答案的元组,如(0.9, {'ground_truth_response': 'MS Dhoni'})
。
解决方案
针对这一问题,建议采取以下解决步骤:
- 确保数据集格式完全符合要求
- 在加载CSV文件后,显式检查数据结构
- 使用最小化测试用例验证功能
- 检查Trulens日志获取更详细的错误信息
最佳实践
为了避免类似问题,建议:
- 建立数据验证机制,在传入反馈函数前检查数据结构
- 为数据集处理编写单元测试
- 使用类型提示和文档字符串明确接口要求
- 在文档中突出显示关键参数要求
总结
GroundTruthAgreement反馈函数是Trulens项目中评估模型准确性的重要工具,但其对输入数据格式有严格要求。开发者在集成使用时应当特别注意数据结构的规范性,通过最小化测试和严格验证确保功能正常运作。这一案例也提醒我们,在构建AI评估系统时,清晰明确的接口文档和健全的输入验证机制至关重要。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3