PGQueuer v0.21.0版本发布:强化队列监听与执行可靠性
PGQueuer是一个基于PostgreSQL的轻量级任务队列系统,它利用PostgreSQL的NOTIFY/LISTEN机制实现高效的任务分发。该系统特别适合需要高可靠性和事务性保证的应用场景,如金融交易处理、订单系统等。
版本核心改进
本次v0.21.0版本主要围绕系统可靠性进行了多项重要改进,同时也移除了一些过时的API接口。这些变更虽然带来了少量兼容性问题,但显著提升了系统的稳定性和可维护性。
监听器健康检查机制
新版本引入了监听器健康检查功能,这是本次更新最重要的改进之一。系统现在会定期(默认每10秒)发送HealthCheckEvent事件,并期望监听器能够正确响应。如果监听器未能及时响应,系统将抛出FailingListenerError异常。
这一机制解决了长期存在的"静默失败"问题。在之前的版本中,如果监听器意外停止工作,系统可能继续运行但无法接收新任务,导致任务积压而不被发现。现在,开发者可以选择让系统在检测到监听器故障时自动关闭,便于监控系统及时发现并重启服务。
启用方式有两种:
- 通过命令行参数:
pgqueuer run ... --shutdown-on-listener-failure
- 在代码中显式设置:
await qm.run(..., shutdown_on_listener_failure=True)
SQL执行重试机制优化
任务执行过程中的重试逻辑得到了显著增强。新版本确保重试操作会严格遵循两个关键配置参数:
serialized_dispatch:控制任务是否按顺序执行concurrency_limit:限制并发任务数量
这一改进使得系统在面对临时性数据库问题时表现更加稳定,特别是在高负载场景下,避免了因重试导致的任务堆积或执行顺序混乱。
不兼容变更与迁移指南
工厂函数路径语法变更
移除了旧式的"点分隔"工厂路径语法(如pkg.mod.factory),统一使用冒号分隔形式(pkg.mod:factory)。这一变更简化了语法解析逻辑,提高了代码可读性。
迁移示例:
- pgqueuer run myapp.factories.build
+ pgqueuer run myapp.factories:build
执行器配置方式变更
移除了所有executor=参数,统一使用executor_factory=。这一变更使得执行器创建逻辑更加灵活,可以基于运行时上下文动态创建执行器实例。
迁移示例:
- @qm.entrypoint("resize", executor=MyExecutor)
+ @qm.entrypoint("resize", executor_factory=lambda _: MyExecutor)
日志级别处理标准化
命令行工具的--log-level参数现在会自动将输入值转换为大写,消除了之前因大小写不一致导致的配置问题。这一改进使得在各种环境下(如不同操作系统)的日志配置行为更加一致。
运维建议
-
监控配置调整:如果启用了监听器快速失败功能,需要确保监控系统能够检测到进程退出并自动重启服务。对于使用systemd的场景,可以配置
Restart=on-failure;在Kubernetes环境中,则需要配置适当的liveness probe。 -
重试策略评估:由于SQL重试机制的改进,建议重新评估现有任务的
max_retries配置,确保其与业务需求匹配。对于关键任务,可能需要增加重试次数;而非关键任务则可以适当减少以避免资源浪费。 -
日志收集适配:日志级别处理的变更可能影响现有的日志收集和分析管道,特别是那些依赖精确字符串匹配的过滤规则。建议检查并更新相关配置。
总结
PGQueuer v0.21.0通过引入监听器健康检查、优化重试机制等改进,显著提升了系统的可靠性。虽然带来了一些不兼容变更,但迁移成本相对较低,且这些变更有助于代码的长期维护。对于生产环境用户,特别是那些对系统可靠性要求较高的场景,建议尽快评估并升级到新版本。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00