《Google Ngrams 数据获取与可视化实战指南》
2025-01-15 19:27:28作者:翟江哲Frasier
引言
在数字人文和自然语言处理领域,Google Ngram Viewer 提供了一个强大的工具,帮助我们探索词汇随时间的使用频率变化。然而,有时候我们需要将 Ngram Viewer 的数据提取出来,进行更深入的分析或自定义的可视化。本文将介绍一个开源项目,它允许我们方便地获取 Ngram 数据,并以 XKCD 风格进行绘图。我们将从安装开始,逐步深入到使用方法,帮助您轻松上手。
安装前准备
系统和硬件要求
在使用本开源项目之前,请确保您的计算机满足以下基本要求:
- 操作系统:支持 Python 的主流操作系统(如 Windows、macOS、Linux)
- 硬件:常规办公或个人电脑配置即可
必备软件和依赖项
为了顺利运行项目,您需要安装以下软件和依赖项:
- Python 3.6 或更高版本
- Matplotlib、Pandas 和 Requests 库
您可以使用 pip 命令一次性安装所有依赖项:
pip install matplotlib pandas requests
安装步骤
下载开源项目资源
首先,从以下地址下载 Google Ngrams 数据获取脚本:
https://github.com/econpy/google-ngrams.git
安装过程详解
将下载的文件夹解压到您的电脑上,确保脚本位于您的计算机路径中,以便可以从命令行运行。
常见问题及解决
如果在安装或运行过程中遇到问题,请检查以下几点:
- 确保所有依赖项都已正确安装
- 检查 Python 路径是否正确配置
- 如果遇到权限问题,请尝试以管理员身份运行命令行
基本使用方法
加载开源项目
在命令行中,导航到存放脚本的文件夹,然后运行以下命令来加载项目:
python getngrams.py
简单示例演示
以下是一些使用 getngrams.py 的基本示例:
python getngrams.py "Albert Einstein, Charles Darwin"
python getngrams.py "aluminum, copper, steel" -noprint
python getngrams.py "Pearl Harbor, Watergate" -corpus=eng_2009
参数设置说明
getngrams.py 支持多个参数,以下是一些常用的参数设置:
--startYear和--endYear:设置查询的起始和结束年份--corpus:选择不同的语料库进行查询--caseInsensitive:进行不区分大小写的搜索--plot:生成 XKCD 风格的图表
例如,以下命令将返回 1980 年至 2000 年间 "internet" 的使用频率,并生成相应的图表:
python getngrams.py internet --startYear=1980 --endYear=2000 --corpus=eng_2012 -caseInsensitive -plot
结论
通过本文的介绍,您应该已经能够成功安装并开始使用这个开源项目来获取和可视化解码 Ngram 数据。接下来,您可以尝试运行更多的查询,探索词汇随时间的变化趋势。如果您对数据可视化感兴趣,还可以尝试使用项目中的 xkcd.py 脚本或 Pandas 库来创建更丰富的图表。
为了进一步学习,您可以查阅以下资源:
请尊重 Google Ngram Viewer 的服务条款,合理使用本代码,不要进行大量的查询以免给 Google 的服务器造成负担。祝您探索愉快!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
207
220
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
287
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
仓颉编程语言运行时与标准库。
Cangjie
134
873