Instaloader项目近期Instagram数据抓取故障分析与解决方案
问题背景
Instaloader作为一款流行的Instagram数据抓取工具,近期遭遇了严重的功能故障。用户报告称在使用过程中出现了多种异常情况:登录状态下无法获取任何帖子;未登录状态下仅能获取4-12个最新帖子;快速更新参数(--fast-update)失效等问题。这些问题严重影响了工具的正常使用,引起了用户社区的广泛关注。
技术分析
经过深入分析,我们发现问题的根源在于Instagram近期对其API接口进行了重大调整。以下是关键的技术发现:
-
接口变更:Instagram废弃了原有的GraphQL查询方式,转而采用新的请求格式。新接口要求使用特定的doc_id参数(7898261790222653)替代原有的query_hash机制。
-
响应结构变化:新接口返回的数据结构与旧版完全不同,原有的解析逻辑无法正确处理新格式的数据。特别是返回数据中的节点结构现在采用了类似iPhone客户端API的格式。
-
请求参数复杂化:新接口要求附带大量额外的请求头参数,包括但不限于:
- av(应用版本标识)
- __d(平台标识)
- __user(用户标识)
- fb_dtsg(Facebook防伪令牌)
- jazoest(加密参数)
-
分页机制调整:原有的分页机制失效,新接口使用end_cursor作为分页标记,但获取方式与之前不同。
解决方案
针对上述问题,社区开发者提出了以下解决方案:
核心修改点
-
Profile类中的get_posts方法重构:
- 新增end_cursor参数支持分页
- 调整查询变量结构以匹配新API要求
- 修改响应解析逻辑以适应新的数据结构格式
-
GraphQL查询方法改造:
- 移除query_hash参数
- 添加doc_id参数(固定值7898261790222653)
- 调整请求头设置
- 修改参数编码方式
-
请求识别逻辑优化:
- 更新GraphQL请求的识别方式
- 调整路径匹配逻辑
具体实现细节
对于get_posts方法的修改,需要处理两种场景:
- 初始请求:仅包含基础查询参数
- 分页请求:包含after参数和end_cursor值
查询变量结构示例:
{
"data": {
"count": 50,
"include_relationship_info": True,
"latest_besties_reel_media": True,
"latest_reel_media": True
},
"username": target_username,
"__relay_internalpvPolarisFeedShareMenurelayprovider": False
}
对于分页请求,还需添加:
{
"after": end_cursor,
"first": 12
}
注意事项
-
兼容性考虑:修改后的代码应当保留对旧版API的支持,以应对Instagram可能的回滚或区域差异化部署。
-
错误处理:新接口的错误响应格式可能发生变化,需要更新错误处理逻辑。
-
性能影响:新接口返回的媒体分辨率可能有所限制(最高1350x1080),需要考虑是否添加额外的质量提升请求。
-
反爬机制:简化请求参数可能增加被Instagram识别为爬虫的风险,建议尽量模拟完整请求。
总结
Instagram的这次API变更对Instaloader等第三方工具造成了较大影响。通过分析网络请求和响应结构,社区开发者已经找到了可行的解决方案。核心思路是适应新的查询参数格式和响应数据结构,同时保持工具的原有功能完整性。这一案例再次证明了在爬虫开发中保持对目标网站变更敏感的重要性,也展示了开源社区协作解决问题的强大能力。
对于普通用户,建议关注Instaloader官方更新,等待集成这些修复的正式版本发布。对于开发者,可以参考上述技术方案进行临时修复,但需注意这仅是应急方案,长期仍需等待官方更完善的更新。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00