IQA-PyTorch 项目使用教程
2026-01-23 06:37:42作者:彭桢灵Jeremy
1. 项目介绍
IQA-PyTorch 是一个基于 PyTorch 的图像质量评估(Image Quality Assessment, IQA)工具箱。该项目提供了多种主流的图像质量评估指标的实现,包括全参考(Full Reference, FR)和无参考(No Reference, NR)指标。通过 GPU 加速,大多数实现比 Matlab 版本更快。项目支持多种图像质量评估方法,如 LPIPS、FID、NIQE、NRQM(Ma)、MUSIQ、TOPIQ、NIMA、DBCNN、BRISQUE、PI 等。
2. 项目快速启动
2.1 安装
你可以通过 pip 安装 IQA-PyTorch:
pip install pyiqa
或者从 GitHub 安装最新版本:
pip uninstall pyiqa # 如果已经安装了旧版本
pip install git+https://github.com/chaofengc/IQA-PyTorch.git
2.2 基本使用
你可以通过命令行界面使用 IQA-PyTorch:
# 列出所有可用的指标
pyiqa -ls
# 使用默认设置测试图像质量
pyiqa [metric_name(s)] --target [image_path or dir] --ref [image_path or dir]
2.3 高级使用
你也可以在代码中使用 IQA-PyTorch:
import pyiqa
import torch
# 列出所有可用的指标
print(pyiqa.list_models())
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# 创建指标对象
iqa_metric = pyiqa.create_metric('lpips', device=device)
# 检查指标是否是越低越好
print(iqa_metric.lower_better)
# 计算图像质量分数
score_fr = iqa_metric(img_tensor_x, img_tensor_y)
3. 应用案例和最佳实践
3.1 图像质量评估
IQA-PyTorch 可以用于评估图像处理算法的效果。例如,你可以使用 LPIPS 指标来评估图像生成模型的输出质量:
lpips_metric = pyiqa.create_metric('lpips', device=device)
score = lpips_metric('path/to/generated_image.png', 'path/to/reference_image.png')
print(f"LPIPS Score: {score}")
3.2 图像质量损失函数
IQA-PyTorch 还可以用作损失函数,帮助优化图像生成模型:
lpips_loss = pyiqa.create_metric('lpips', device=device, as_loss=True)
loss = lpips_loss(img_tensor_x, img_tensor_y)
print(f"Loss: {loss}")
4. 典型生态项目
4.1 Hugging Face Datasets
IQA-PyTorch 项目与 Hugging Face Datasets 集成,方便用户下载和使用图像质量评估数据集:
from huggingface_hub import snapshot_download
save_dir = '/datasets'
filename = "meta_info.tgz"
snapshot_download("chaofengc/IQA-Toolbox-Datasets", repo_type="dataset", local_dir=save_dir, allow_patterns=filename, local_dir_use_symlinks=False)
4.2 Clean-FID
IQA-PyTorch 中的 FID 指标与 Clean-FID 项目兼容,可以用于评估生成模型的质量:
fid_metric = pyiqa.create_metric('fid')
score = fid_metric('/ResultsCalibra/dist_dir/', '/ResultsCalibra/ref_dir')
print(f"FID Score: {score}")
通过这些生态项目的集成,IQA-PyTorch 可以更好地服务于图像质量评估和生成模型的研究与应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355