IQA-PyTorch 项目使用教程
2026-01-23 06:37:42作者:彭桢灵Jeremy
1. 项目介绍
IQA-PyTorch 是一个基于 PyTorch 的图像质量评估(Image Quality Assessment, IQA)工具箱。该项目提供了多种主流的图像质量评估指标的实现,包括全参考(Full Reference, FR)和无参考(No Reference, NR)指标。通过 GPU 加速,大多数实现比 Matlab 版本更快。项目支持多种图像质量评估方法,如 LPIPS、FID、NIQE、NRQM(Ma)、MUSIQ、TOPIQ、NIMA、DBCNN、BRISQUE、PI 等。
2. 项目快速启动
2.1 安装
你可以通过 pip 安装 IQA-PyTorch:
pip install pyiqa
或者从 GitHub 安装最新版本:
pip uninstall pyiqa # 如果已经安装了旧版本
pip install git+https://github.com/chaofengc/IQA-PyTorch.git
2.2 基本使用
你可以通过命令行界面使用 IQA-PyTorch:
# 列出所有可用的指标
pyiqa -ls
# 使用默认设置测试图像质量
pyiqa [metric_name(s)] --target [image_path or dir] --ref [image_path or dir]
2.3 高级使用
你也可以在代码中使用 IQA-PyTorch:
import pyiqa
import torch
# 列出所有可用的指标
print(pyiqa.list_models())
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# 创建指标对象
iqa_metric = pyiqa.create_metric('lpips', device=device)
# 检查指标是否是越低越好
print(iqa_metric.lower_better)
# 计算图像质量分数
score_fr = iqa_metric(img_tensor_x, img_tensor_y)
3. 应用案例和最佳实践
3.1 图像质量评估
IQA-PyTorch 可以用于评估图像处理算法的效果。例如,你可以使用 LPIPS 指标来评估图像生成模型的输出质量:
lpips_metric = pyiqa.create_metric('lpips', device=device)
score = lpips_metric('path/to/generated_image.png', 'path/to/reference_image.png')
print(f"LPIPS Score: {score}")
3.2 图像质量损失函数
IQA-PyTorch 还可以用作损失函数,帮助优化图像生成模型:
lpips_loss = pyiqa.create_metric('lpips', device=device, as_loss=True)
loss = lpips_loss(img_tensor_x, img_tensor_y)
print(f"Loss: {loss}")
4. 典型生态项目
4.1 Hugging Face Datasets
IQA-PyTorch 项目与 Hugging Face Datasets 集成,方便用户下载和使用图像质量评估数据集:
from huggingface_hub import snapshot_download
save_dir = '/datasets'
filename = "meta_info.tgz"
snapshot_download("chaofengc/IQA-Toolbox-Datasets", repo_type="dataset", local_dir=save_dir, allow_patterns=filename, local_dir_use_symlinks=False)
4.2 Clean-FID
IQA-PyTorch 中的 FID 指标与 Clean-FID 项目兼容,可以用于评估生成模型的质量:
fid_metric = pyiqa.create_metric('fid')
score = fid_metric('/ResultsCalibra/dist_dir/', '/ResultsCalibra/ref_dir')
print(f"FID Score: {score}")
通过这些生态项目的集成,IQA-PyTorch 可以更好地服务于图像质量评估和生成模型的研究与应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.65 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
298
347
一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
116
21
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.3 K
722
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1