PyRIT项目中新增多语言漏洞评估数据集的技术实现
在人工智能安全领域,多语言环境下大型语言模型(LLM)的漏洞评估一直是个重要课题。最近一篇题为"A Framework to Assess Multilingual Vulnerabilities of LLMs"的研究论文提出了一个专门用于评估多语言环境下LLM安全性的数据集,这对于PyRIT项目的数据集模块是一个有价值的补充。
该数据集包含了多种语言编写的提示词(prompt),旨在测试LLM在多语言环境下的安全漏洞。数据集中的每条记录都包含了一个可能触发模型不安全行为的文本提示,并标注了相应的危害类别(harm category)。这些类别可以帮助研究人员更系统地分析模型在不同语言和文化背景下的表现差异。
从技术实现角度看,在PyRIT项目中集成这个数据集需要完成以下几个关键步骤:
-
数据获取:需要编写一个fetch函数,从原始数据源获取CSV格式的数据文件。这个函数应该遵循PyRIT项目中已有的数据集获取模式,确保代码风格的一致性。
-
数据转换:原始数据集中的"type"字段需要映射到PyRIT的harm_categories字段中。这个过程需要考虑类别定义的兼容性,必要时进行适当的转换或扩展。
-
数据标准化:确保新数据集的结构与PyRIT现有数据集保持一致,包括字段命名、数据格式等方面。
-
引用和授权:在代码中正确引用原始论文作者,遵循数据集的许可协议要求。
-
测试验证:编写单元测试验证数据获取和处理的正确性,确保数据集能够被PyRIT的其他模块正确使用。
这个数据集的加入将显著增强PyRIT在多语言安全评估方面的能力,使研究人员能够:
- 测试模型在不同语言环境下的安全表现
- 比较模型跨语言的安全漏洞差异
- 开发更具包容性的安全防护措施
对于开发者而言,实现这个功能是一个很好的入门级任务,可以熟悉PyRIT项目的代码结构和数据处理流程。项目维护者也提供了相关实现示例作为参考,帮助开发者快速上手。
这个功能的实现不仅丰富了PyRIT的数据资源,也为多语言AI安全研究提供了重要的工具支持,体现了开源社区协作推动技术进步的价值。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00