PyRIT项目中新增多语言漏洞评估数据集的技术实现
在人工智能安全领域,多语言环境下大型语言模型(LLM)的漏洞评估一直是个重要课题。最近一篇题为"A Framework to Assess Multilingual Vulnerabilities of LLMs"的研究论文提出了一个专门用于评估多语言环境下LLM安全性的数据集,这对于PyRIT项目的数据集模块是一个有价值的补充。
该数据集包含了多种语言编写的提示词(prompt),旨在测试LLM在多语言环境下的安全漏洞。数据集中的每条记录都包含了一个可能触发模型不安全行为的文本提示,并标注了相应的危害类别(harm category)。这些类别可以帮助研究人员更系统地分析模型在不同语言和文化背景下的表现差异。
从技术实现角度看,在PyRIT项目中集成这个数据集需要完成以下几个关键步骤:
-
数据获取:需要编写一个fetch函数,从原始数据源获取CSV格式的数据文件。这个函数应该遵循PyRIT项目中已有的数据集获取模式,确保代码风格的一致性。
-
数据转换:原始数据集中的"type"字段需要映射到PyRIT的harm_categories字段中。这个过程需要考虑类别定义的兼容性,必要时进行适当的转换或扩展。
-
数据标准化:确保新数据集的结构与PyRIT现有数据集保持一致,包括字段命名、数据格式等方面。
-
引用和授权:在代码中正确引用原始论文作者,遵循数据集的许可协议要求。
-
测试验证:编写单元测试验证数据获取和处理的正确性,确保数据集能够被PyRIT的其他模块正确使用。
这个数据集的加入将显著增强PyRIT在多语言安全评估方面的能力,使研究人员能够:
- 测试模型在不同语言环境下的安全表现
- 比较模型跨语言的安全漏洞差异
- 开发更具包容性的安全防护措施
对于开发者而言,实现这个功能是一个很好的入门级任务,可以熟悉PyRIT项目的代码结构和数据处理流程。项目维护者也提供了相关实现示例作为参考,帮助开发者快速上手。
这个功能的实现不仅丰富了PyRIT的数据资源,也为多语言AI安全研究提供了重要的工具支持,体现了开源社区协作推动技术进步的价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00