使用Sloth进行图像标注的入门指南
2025-06-11 06:15:25作者:卓炯娓
前言
Sloth是一个灵活的图像标注工具,特别适合计算机视觉和机器学习领域的研究人员和开发者使用。本文将详细介绍如何开始使用Sloth进行基本的图像标注工作,包括加载标签文件、编辑标注以及创建自定义配置。
快速开始
使用默认配置启动
最简单的使用方式是直接加载一个符合Sloth支持格式的标签文件:
sloth examples/example1_labels.json
这个示例文件包含了两个图像的标注信息:
image1.jpg
:包含两个矩形标注image2.jpg
:包含一个点标注
标签文件采用JSON格式,结构清晰易懂。每个图像对象包含class
、filename
和annotations
三个主要字段,其中annotations
数组包含了该图像的所有标注。
标注编辑操作指南
选择标注
在Sloth中编辑标注前,首先需要选择目标标注:
- 鼠标选择:直接点击标注区域
- 键盘选择:使用TAB键循环切换当前图像中的所有标注
被选中的标注会显示为虚线轮廓,便于识别。
修改标注位置
鼠标操作:
- 左键拖动:移动标注位置
- 右键拖动(矩形标注):调整宽度和高度
键盘操作:
- 方向键:以1像素为步长移动标注
- Shift+方向键:以5像素为步长移动标注
- Ctrl+方向键(矩形标注):调整宽度和高度
- Ctrl+Shift+方向键:以5像素为步长调整矩形尺寸
添加新标注
Sloth提供了直观的标注添加方式:
- 在属性面板(默认位于窗口左侧)点击对应标注类型的按钮
- 进入插入模式后,直接在图像上绘制新标注
快捷键:
r
:进入矩形标注插入模式p
:进入点标注插入模式
自定义配置详解
Sloth的强大之处在于其高度可定制的配置系统。通过创建Python格式的配置文件,用户可以完全自定义标注类型、属性和交互方式。
基本配置结构
配置文件的核心是LABELS
变量,它是一个包含多个字典的元组/列表,每个字典定义一种标注类型:
LABELS = (
{
"attributes": {"type": "rect", "class": "head", "id": ["Martin", "Mika"]},
"item": "sloth.items.RectItem",
"inserter": "sloth.items.RectItemInserter",
"text": "Head"
},
# 更多标注类型...
)
配置项解析
- text:标注类型的描述文本,显示在属性面板中
- item:指定用于可视化标注的类
sloth.items.RectItem
:矩形标注sloth.items.PointItem
:点标注
- inserter:指定用于创建新标注的插入器类
- attributes:定义标注属性和编辑方式
- 固定键值对:自动添加到新标注中且不可编辑
- 值列表:用户可从下拉列表中选择,支持交互式编辑
属性匹配机制
Sloth使用class
和type
两个键进行标注类型匹配:
- 两者都匹配时优先
- 只有一个匹配且另一个不存在时也会匹配
- 按
LABELS
中的顺序检查,使用第一个匹配项
使用自定义配置
保存配置为.py
文件后,通过--config
参数加载:
sloth --config myconfig.py examples/example1_labels.json
高级功能概览
除了基本的标注配置外,Sloth还支持更多高级功能:
- 自定义可视化项
- 自定义插入器
- 自定义标签容器格式
- 快捷键配置
- 多种标签格式支持
最佳实践建议
- 合理设计标注类型:根据实际需求定义足够详细但不冗余的标注类型
- 利用属性列表:为可能变化的属性(如对象ID)提供可选值列表
- 善用快捷键:为常用标注类型配置快捷键可显著提高工作效率
- 保持配置简洁:只包含项目真正需要的标注类型和属性
结语
通过本文,您应该已经掌握了Sloth的基本使用方法。从简单的默认配置启动到创建复杂的自定义配置,Sloth提供了灵活而强大的工具来满足各种图像标注需求。建议从简单配置开始,随着项目需求增长逐步探索更高级的功能。
下一步,您可以深入了解Sloth的高级配置选项、自定义可视化项开发以及如何支持自定义标签格式等主题,以充分发挥这个工具的潜力。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

Ascend Extension for PyTorch
Python
75
106

仓颉编程语言测试用例。
Cangjie
34
61

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401