ComfyUI-WanVideoWrapper项目中的显存优化问题分析与解决方案
问题背景
在使用ComfyUI-WanVideoWrapper进行视频生成时,用户遇到了显存不足(OOM)的问题。该用户使用的是NVIDIA RTX 3090显卡,拥有24GB显存,系统内存为32GB。尽管尝试了多种配置组合,包括调整交换空间(max swap 40)和不同的模型加载策略,问题依然存在。
问题分析
从错误日志可以看出,问题发生在模型加载阶段,系统尝试将模型加载到显存时出现了内存不足的情况。深入分析后,我们发现几个关键点:
-
模型加载策略不当:用户尝试了多种模型加载组合,包括将所有组件(CLIP文本编码器、T5文本编码器、主模型)全部加载到显存或全部卸载到系统内存,以及部分加载到显存部分卸载到系统内存的组合,但均未能解决问题。
-
高显存模式的影响:最终发现问题的根源在于用户使用了
--high-vram模式。这个模式会强制将所有模型组件加载到显存中,而WanVideoWrapper的模型体积较大,即使24GB显存也无法满足需求。 -
系统资源分配:32GB的系统内存在处理大型视频生成模型时可能略显不足,特别是在需要将部分模型组件卸载到系统内存的情况下。
解决方案
针对这一问题,我们建议采取以下优化措施:
-
禁用高显存模式:这是最关键的一步。在ComfyUI的启动参数中移除
--high-vram选项,让系统能够智能地分配模型组件到显存和系统内存。 -
合理的模型加载策略:建议采用以下加载配置:
- 主模型:加载到显存
- CLIP文本编码器:卸载到系统内存
- T5文本编码器:卸载到系统内存
-
系统优化:
- 确保系统交换空间足够大
- 关闭不必要的后台程序,释放更多系统资源
- 考虑升级系统内存到64GB以获得更好的性能
-
批次处理优化:
- 降低视频分辨率或帧率
- 使用较小的模型版本(如GGUF格式)
- 分批次处理视频片段
技术原理
WanVideoWrapper作为视频生成模型,其内存需求主要来自三个方面:
-
模型参数:视频生成模型通常包含大量参数,需要大量显存存储。
-
中间计算结果:在生成过程中会产生大量中间计算结果,这些数据也需要存储在显存中。
-
视频数据缓存:处理视频时需要缓存多帧数据,进一步增加了内存压力。
通过合理的模型加载策略和资源分配,可以显著降低显存使用量,使24GB显存的显卡也能流畅运行视频生成任务。
总结
在使用ComfyUI-WanVideoWrapper进行视频生成时,合理配置显存和系统内存的使用至关重要。避免使用--high-vram模式,采用分组件加载策略,并适当优化系统配置,可以有效解决显存不足的问题。对于拥有24GB显存的用户,通过上述优化完全可以流畅运行视频生成任务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00