ComfyUI-WanVideoWrapper项目中的显存优化问题分析与解决方案
问题背景
在使用ComfyUI-WanVideoWrapper进行视频生成时,用户遇到了显存不足(OOM)的问题。该用户使用的是NVIDIA RTX 3090显卡,拥有24GB显存,系统内存为32GB。尽管尝试了多种配置组合,包括调整交换空间(max swap 40)和不同的模型加载策略,问题依然存在。
问题分析
从错误日志可以看出,问题发生在模型加载阶段,系统尝试将模型加载到显存时出现了内存不足的情况。深入分析后,我们发现几个关键点:
-
模型加载策略不当:用户尝试了多种模型加载组合,包括将所有组件(CLIP文本编码器、T5文本编码器、主模型)全部加载到显存或全部卸载到系统内存,以及部分加载到显存部分卸载到系统内存的组合,但均未能解决问题。
-
高显存模式的影响:最终发现问题的根源在于用户使用了
--high-vram模式。这个模式会强制将所有模型组件加载到显存中,而WanVideoWrapper的模型体积较大,即使24GB显存也无法满足需求。 -
系统资源分配:32GB的系统内存在处理大型视频生成模型时可能略显不足,特别是在需要将部分模型组件卸载到系统内存的情况下。
解决方案
针对这一问题,我们建议采取以下优化措施:
-
禁用高显存模式:这是最关键的一步。在ComfyUI的启动参数中移除
--high-vram选项,让系统能够智能地分配模型组件到显存和系统内存。 -
合理的模型加载策略:建议采用以下加载配置:
- 主模型:加载到显存
- CLIP文本编码器:卸载到系统内存
- T5文本编码器:卸载到系统内存
-
系统优化:
- 确保系统交换空间足够大
- 关闭不必要的后台程序,释放更多系统资源
- 考虑升级系统内存到64GB以获得更好的性能
-
批次处理优化:
- 降低视频分辨率或帧率
- 使用较小的模型版本(如GGUF格式)
- 分批次处理视频片段
技术原理
WanVideoWrapper作为视频生成模型,其内存需求主要来自三个方面:
-
模型参数:视频生成模型通常包含大量参数,需要大量显存存储。
-
中间计算结果:在生成过程中会产生大量中间计算结果,这些数据也需要存储在显存中。
-
视频数据缓存:处理视频时需要缓存多帧数据,进一步增加了内存压力。
通过合理的模型加载策略和资源分配,可以显著降低显存使用量,使24GB显存的显卡也能流畅运行视频生成任务。
总结
在使用ComfyUI-WanVideoWrapper进行视频生成时,合理配置显存和系统内存的使用至关重要。避免使用--high-vram模式,采用分组件加载策略,并适当优化系统配置,可以有效解决显存不足的问题。对于拥有24GB显存的用户,通过上述优化完全可以流畅运行视频生成任务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00