Spring AI Alibaba 多模态调用中的空指针异常分析与解决
问题背景
在使用 Spring AI Alibaba 项目进行多模态模型调用时,开发者遇到了一个典型的空指针异常问题。当尝试通过 ChatClient 方式调用通义千问的多模态模型时,系统抛出 java.lang.NullPointerException: Cannot invoke "java.lang.Integer.longValue()" 错误,而直接使用 ChatModel 调用却能正常工作。
异常现象分析
异常堆栈显示问题发生在 DashScopeAiUsage.getTotalTokens() 方法中,具体原因是尝试对 TokenUsage.totalTokens() 返回的 null 值调用 longValue() 方法。这表明在多模态模型调用场景下,通义千问的 API 响应中可能没有返回 token 使用量信息。
两种调用方式对比
问题调用方式
ChatClient.CallResponseSpec call = ChatClient.create(chatModel).prompt()
.user(promptUserSpec -> toPrompt(promptUserSpec, aiMessageWrapper.getMessage()))
.advisors(advisorSpec -> {
advisorSpec.advisors(new SimpleLoggerAdvisor());
}).call();
String content = call.chatResponse().getResult().getOutput().getContent();
正常调用方式
ChatResponse response = chatModel.call(
new Prompt(
message,
DashScopeChatOptions.builder()
.withModel("qwen-vl-max-latest")
.withMultiModel(true)
.build()
)
);
return response.getResult().getOutput().getContent();
根本原因
经过深入分析,发现问题出在 SimpleLoggerAdvisor 的日志记录机制上。该顾问(Advisor)会尝试序列化整个响应对象,包括 token 使用量信息。但在多模态调用场景下:
- 通义千问的多模态 API 可能不会返回 token 使用量信息
SimpleLoggerAdvisor没有对这种特殊情况做容错处理- 当尝试序列化 null 的 token 计数时,触发了空指针异常
解决方案
针对这个问题,可以采用以下几种解决方案:
-
移除日志顾问:如果不需要详细的调用日志,可以简单移除
SimpleLoggerAdvisor -
使用容错日志记录:自定义一个日志顾问,处理可能为 null 的 token 计数
-
使用直接调用方式:如示例中的第二种方式,绕过 ChatClient 的复杂处理流程
-
等待框架修复:Spring AI Alibaba 团队可能会在后续版本中修复这个兼容性问题
最佳实践建议
- 在多模态调用场景下,优先使用简单的
chatModel.call()方式 - 如果需要使用 ChatClient,建议暂时避免添加可能处理响应元数据的顾问
- 对框架返回的数据保持防御性编程思维,特别是对于可选字段
- 关注框架更新,及时获取官方修复
总结
这个问题展示了在使用新兴 AI 框架时可能遇到的边界情况。多模态模型与传统文本模型的响应结构可能存在差异,而框架的通用处理逻辑可能无法完全覆盖这些特殊情况。开发者需要理解框架的工作原理,并在关键位置添加适当的容错处理,以构建更健壮的应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00