Spring AI Alibaba 多模态调用中的空指针异常分析与解决
问题背景
在使用 Spring AI Alibaba 项目进行多模态模型调用时,开发者遇到了一个典型的空指针异常问题。当尝试通过 ChatClient 方式调用通义千问的多模态模型时,系统抛出 java.lang.NullPointerException: Cannot invoke "java.lang.Integer.longValue()" 错误,而直接使用 ChatModel 调用却能正常工作。
异常现象分析
异常堆栈显示问题发生在 DashScopeAiUsage.getTotalTokens() 方法中,具体原因是尝试对 TokenUsage.totalTokens() 返回的 null 值调用 longValue() 方法。这表明在多模态模型调用场景下,通义千问的 API 响应中可能没有返回 token 使用量信息。
两种调用方式对比
问题调用方式
ChatClient.CallResponseSpec call = ChatClient.create(chatModel).prompt()
.user(promptUserSpec -> toPrompt(promptUserSpec, aiMessageWrapper.getMessage()))
.advisors(advisorSpec -> {
advisorSpec.advisors(new SimpleLoggerAdvisor());
}).call();
String content = call.chatResponse().getResult().getOutput().getContent();
正常调用方式
ChatResponse response = chatModel.call(
new Prompt(
message,
DashScopeChatOptions.builder()
.withModel("qwen-vl-max-latest")
.withMultiModel(true)
.build()
)
);
return response.getResult().getOutput().getContent();
根本原因
经过深入分析,发现问题出在 SimpleLoggerAdvisor 的日志记录机制上。该顾问(Advisor)会尝试序列化整个响应对象,包括 token 使用量信息。但在多模态调用场景下:
- 通义千问的多模态 API 可能不会返回 token 使用量信息
SimpleLoggerAdvisor没有对这种特殊情况做容错处理- 当尝试序列化 null 的 token 计数时,触发了空指针异常
解决方案
针对这个问题,可以采用以下几种解决方案:
-
移除日志顾问:如果不需要详细的调用日志,可以简单移除
SimpleLoggerAdvisor -
使用容错日志记录:自定义一个日志顾问,处理可能为 null 的 token 计数
-
使用直接调用方式:如示例中的第二种方式,绕过 ChatClient 的复杂处理流程
-
等待框架修复:Spring AI Alibaba 团队可能会在后续版本中修复这个兼容性问题
最佳实践建议
- 在多模态调用场景下,优先使用简单的
chatModel.call()方式 - 如果需要使用 ChatClient,建议暂时避免添加可能处理响应元数据的顾问
- 对框架返回的数据保持防御性编程思维,特别是对于可选字段
- 关注框架更新,及时获取官方修复
总结
这个问题展示了在使用新兴 AI 框架时可能遇到的边界情况。多模态模型与传统文本模型的响应结构可能存在差异,而框架的通用处理逻辑可能无法完全覆盖这些特殊情况。开发者需要理解框架的工作原理,并在关键位置添加适当的容错处理,以构建更健壮的应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00