NGXS Store中selectSignal()的引用变更与性能优化实践
2025-06-20 18:10:45作者:宣聪麟
NGXS作为Angular状态管理库,其selectSignal()方法在最新版本中被广泛使用。本文将深入分析一个典型性能问题:当selector返回新引用但内容未变时,如何避免不必要的计算和渲染。
问题本质
在响应式编程中,我们期望只有当数据真正发生变化时才触发更新。然而在NGXS中,selectSignal()默认使用引用比较(===),这会导致:
// 即使内容相同,每次返回新数组也会触发更新
@Selector()
static getItems(state) {
return [...state.items]; // 总是新引用
}
这种模式在以下场景会产生性能问题:
- 返回克隆对象/数组
- 使用map/filter等返回新数组的方法
- 任何返回新引用的数据转换
深层原因分析
1. 选择器设计缺陷
许多开发者会直接编写"宽泛"的选择器,导致任何状态变化都会触发重新计算:
@Selector()
static getUserData(state) {
// 任何state变化都会导致重新计算
return transformUserData(state.user);
}
2. 可变数据反模式
在状态管理中直接存储带有方法的对象(如clone())是反模式:
// 不推荐
class FormElement {
constructor(public id: string) {}
clone() { return new FormElement(this.id); }
}
专业解决方案
方案一:分层选择器设计
通过分解选择器依赖关系,精确控制更新触发条件:
@Selector()
static baseItems(state) {
return state.items; // 仅当items引用变化时触发
}
@Selector([MyState.baseItems])
static transformedItems(items) {
return items.map(...); // 仅在baseItems变化时计算
}
方案二:计算信号优化
在组件层使用Angular的computed()进行派生状态管理:
// store选择器保持纯净
items = this.store.selectSignal(MyState.items);
// 组件内处理可变需求
transformedItems = computed(() => {
return this.items().map(item => ({...item}));
});
方案三:不可变数据实践
遵循状态管理最佳实践:
- 存储纯数据对象,而非类实例
- 使用工具函数而非实例方法进行转换
- 保持状态可序列化
// 推荐模式
interface FormElement {
id: string;
// 其他纯数据字段
}
function cloneFormElement(element: FormElement): FormElement {
return {...element};
}
高级模式:性能优化技巧
对于复杂场景,可采用以下模式:
- 记忆化选择器:在selector内部实现记忆化
- 相等性比较:虽然NGXS未直接支持,可通过中间信号实现
- 惰性计算:结合Angular的
effect()实现按需计算
// 自定义相等性比较示例
optimizedSignal = computed(() => this.store.selectSignal(MyState.data)(), {
equal: (a, b) => deepEqual(a, b)
});
总结
NGXS状态管理中的性能优化关键在于:
- 设计精细化的选择器依赖链
- 严格区分不可变状态和可变派生数据
- 遵循纯函数和不可变数据原则
- 合理利用Angular信号机制
通过以上实践,可以显著减少不必要的计算和渲染,提升大型应用性能。记住,良好的状态结构设计往往比后期优化更有效。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
226
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
暂无简介
Dart
596
130
React Native鸿蒙化仓库
JavaScript
233
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
仓颉编译器源码及 cjdb 调试工具。
C++
123
627
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
361
2.58 K