RDKit中RascalMCES与FMCS模块的芳香环匹配差异分析
2025-06-28 23:39:33作者:伍希望
概述
在化学信息学领域,分子结构比较是许多计算任务的基础。RDKit作为一款广泛使用的化学信息学工具包,提供了多种分子比较方法。本文将重点分析RDKit中RascalMCES和FMCS两个模块在处理芳香环匹配时的行为差异,帮助用户理解其内部机制并正确使用这些工具。
问题背景
当用户尝试比较两个芳香环结构时,发现RascalMCES和FMCS模块返回了不同的结果。具体案例中,比较了呋喃(C1=COC=C1)和苯(C1=CC=CC=C1)两个分子结构:
- 使用FMCS模块能够正确识别出部分匹配的芳香环模式
- 但RascalMCES模块却返回了空结果
技术分析
1. 分子输入方式的差异
问题的第一个关键点在于分子输入方式的不同:
- 使用
MolFromSmiles()创建的分子会被Kekul化,芳香键会被转换为交替的单双键 - 使用
MolFromSmarts()创建的分子则保留原始的键序表示
在案例中,一个分子使用Smiles输入,另一个使用Smarts输入,导致键类型不匹配,RascalMCES无法找到共同子结构。
2. RascalMCES的相似度阈值机制
RascalMCES模块内置了相似度阈值机制(默认0.7),当预估的相似度低于此阈值时,模块不会执行完整搜索。对于小分子而言,少量键的不匹配就会显著降低相似度评分。
3. 解决方案
要使RascalMCES返回与FMCS类似的结果,需要进行以下调整:
- 统一使用
MolFromSmiles()创建分子 - 降低相似度阈值(如设为0.1)
- 启用
returnEmptyMCES选项以获取相似度评分信息
实际应用建议
-
输入一致性:比较分子时应确保使用相同的创建方法,推荐统一使用
MolFromSmiles() -
参数调整:
- 对于小分子比较,适当降低
similarityThreshold - 启用
returnEmptyMCES以获取调试信息 - 根据需求设置
completeAromaticRings和ringMatchesRingOnly
- 对于小分子比较,适当降低
-
结果解释:
- RascalMCES返回的
tier1Sim和tier2Sim提供了不同层次的相似度评估 atomMatches列表展示了具体的原子对应关系
- RascalMCES返回的
代码示例
from rdkit import Chem
from rdkit.Chem import rdRascalMCES
from rdkit.Chem import rdFMCS
# 统一使用MolFromSmiles创建分子
test_mol1 = Chem.MolFromSmiles('C1=COC=C1')
test_mol2 = Chem.MolFromSmiles('C1=CC=CC=C1')
# 配置RascalMCES参数
rascal_opts = rdRascalMCES.RascalOptions()
rascal_opts.completeAromaticRings = False
rascal_opts.ringMatchesRingOnly = False
rascal_opts.returnEmptyMCES = True
rascal_opts.similarityThreshold = 0.1 # 降低阈值
# 执行MCES搜索
results = rdRascalMCES.FindMCES(test_mol1, test_mol2, rascal_opts)
print(f'找到的MCES数量: {len(results)}')
print(f'Tier1相似度: {results[0].tier1Sim}, Tier2相似度: {results[0].tier2Sim}')
print(f'原子匹配: {results[0].atomMatches()}, SMARTS: {results[0].smartsString}')
# 对比FMCS结果
mcs = rdFMCS.FindMCS([test_mol1, test_mol2],
atomCompare=rdFMCS.AtomCompare.CompareElements,
bondCompare=rdFMCS.BondCompare.CompareOrder,
completeRingsOnly=False,
ringMatchesRingOnly=False)
print(f'MCS SMARTS: {mcs.smartsString}')
结论
RDKit中的RascalMCES和FMCS模块虽然都用于分子比较,但在实现机制和默认参数上存在差异。理解这些差异对于正确使用这些工具至关重要。对于芳香环系统的比较,特别需要注意分子输入方式和参数配置,才能获得预期的结果。通过合理调整参数,两个模块可以得到一致的匹配结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869