JeecgBoot项目中高级查询功能在代码生成后的使用注意事项
在JeecgBoot项目开发过程中,许多开发者会遇到一个常见问题:使用online开发表单时,高级查询功能测试正常,但在生成代码后,只要表单包含附表就会出现错误。这种情况不仅出现在开发者自定义的代码中,甚至在官方最新代码中也会出现。
问题本质分析
这个问题的核心在于代码生成器对高级查询功能的支持限制。JeecgBoot的online开发环境提供了完整的高级查询功能,包括主表和附表的联合查询。然而,当代码生成后,系统默认生成的代码并不自动包含处理附表高级查询的逻辑。
技术实现原理
高级查询功能在后台接收请求时,主要依赖两个关键参数:
superQueryMatchType- 表示查询条件的组合方式(AND或OR)superQueryParams- 包含所有查询条件的参数集合
当涉及附表查询时,系统需要额外处理这些参数,才能实现跨表联合查询。
解决方案实现步骤
要解决这个问题,开发者需要手动实现以下逻辑:
-
参数分离处理
首先从superQueryParams中识别并分离出属于子表的查询条件。这需要根据实体对象的属性映射关系来匹配数据库字段。 -
子表查询处理
对分离出的子表条件执行查询,获取符合条件记录的外键值集合。这一步是关键,它建立了主表和子表的关联桥梁。 -
主表查询构建
使用获取的外键值集合构建主表的IN查询条件,同时从原始参数中移除已处理的子表条件。 -
结果合并
最终执行主表查询,返回符合主表和子表条件的完整结果集。
实现注意事项
在实际开发中,还需要注意以下几点:
-
字段映射准确性
确保实体属性与数据库字段的映射关系正确无误,这是条件分离的基础。 -
性能优化
对于大数据量表,需要考虑查询性能,适当添加索引或优化查询逻辑。 -
异常处理
完善参数校验和异常捕获机制,确保在参数错误时能给出友好提示。 -
代码复用
可以将这部分逻辑封装成公共方法,方便在不同业务模块中复用。
总结
虽然JeecgBoot的代码生成器在高级查询功能上存在这一限制,但通过理解其工作原理并实施上述解决方案,开发者完全可以实现完整的跨表高级查询功能。这一过程不仅解决了具体问题,也加深了对JeecgBoot框架查询机制的理解,为后续开发更复杂的业务场景打下了基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00