Nautilus Trader 自定义数据序列化技术详解
2025-06-06 16:35:55作者:毕习沙Eudora
概述
Nautilus Trader 作为一个高性能的交易框架,提供了强大的自定义数据支持能力。本文将深入探讨如何在 Nautilus Trader 中实现自定义数据的序列化与反序列化,包括内存缓存、消息总线通信以及持久化存储等关键场景。
自定义数据类基础实现
在 Nautilus Trader 中,所有自定义数据类都应继承自基础 Data 类。以下是一个典型的期权希腊值数据实现示例:
class GreeksData(Data):
def __init__(self, instrument_id: InstrumentId, ts_event: int, ts_init: int, delta: float):
self.instrument_id = instrument_id
self._ts_event = ts_event
self._ts_init = ts_init
self.delta = delta
@property
def ts_event(self):
return self._ts_event
@property
def ts_init(self):
return self._ts_init
关键点说明:
- 必须实现
ts_event和ts_init属性,这是 Nautilus Trader 时间处理的基础 - 自定义字段如
delta可根据业务需求自由添加
序列化方法实现
字典序列化
def to_dict(self):
return {
"instrument_id": self.instrument_id.value,
"ts_event": self._ts_event,
"ts_init": self._ts_init,
"delta": self.delta
}
@classmethod
def from_dict(cls, data: dict):
return cls(
InstrumentId.from_str(data["instrument_id"]),
data["ts_event"],
data["ts_init"],
data["delta"]
)
二进制序列化
def to_bytes(self):
return msgspec.msgpack.encode(self.to_dict())
@classmethod
def from_bytes(cls, data: bytes):
return cls.from_dict(msgspec.msgpack.decode(data))
数据目录(Arrow)序列化
def to_catalog(self):
return pa.RecordBatch.from_pylist([self.to_dict()], schema=self.schema())
@classmethod
def from_catalog(cls, table: pa.Table):
return [cls.from_dict(d) for d in table.to_pylist()]
@classmethod
def schema(cls):
return pa.schema({
"instrument_id": pa.string(),
"ts_event": pa.int64(),
"ts_init": pa.int64(),
"delta": pa.float64()
})
实际应用场景
消息总线通信
# 注册序列化类型
register_serializable_type(GreeksData, GreeksData.to_dict, GreeksData.from_dict)
# 发布数据
def publish_greeks(self, greeks_data: GreeksData):
self.publish_data(DataType(GreeksData), greeks_data)
# 订阅数据
def subscribe_to_greeks(self):
self.subscribe_data(DataType(GreeksData))
# 接收处理
def on_data(self, data):
if isinstance(data, GreeksData):
print("Received:", data)
缓存使用
def greeks_key(instrument_id: InstrumentId):
return f"{instrument_id}_GREEKS"
def cache_greeks(self, greeks_data: GreeksData):
self.cache.add(greeks_key(greeks_data.instrument_id), greeks_data.to_bytes())
def greeks_from_cache(self, instrument_id: InstrumentId):
return GreeksData.from_bytes(self.cache.get(greeks_key(instrument_id)))
持久化存储
# 注册Arrow序列化器
register_arrow(GreeksData, GreeksData.schema(), GreeksData.to_catalog, GreeksData.from_catalog)
# 写入数据目录
catalog = ParquetDataCatalog('.')
catalog.write_data([GreeksData()])
高级用法:自定义数据类装饰器
为了简化自定义数据类的创建,可以开发一个装饰器自动实现所有必需的序列化方法:
def customdataclass(cls):
# 自动实现各种序列化方法
# ...
return cls
@customdataclass
@dataclass
class GreeksData(Data):
instrument_id: InstrumentId = InstrumentId.from_str('ES.GLBX')
delta: float = 0.
_ts_event: int = 0
_ts_init: int = 0
def __repr__(self):
return f"GreeksData({self.instrument_id}, delta={self.delta})"
该装饰器会自动处理:
- 基础属性实现
- 各种序列化方法
- 类型注册
- 与数据目录的集成
最佳实践建议
-
明确时间戳字段:始终显式声明
_ts_event和_ts_init字段,避免隐式处理带来的混淆 -
类型注解:使用 Python 类型注解提高代码可读性和工具支持
-
测试覆盖:确保测试所有序列化/反序列化路径,特别是边缘情况
-
性能考量:对于高频数据,考虑优化序列化方法性能
-
文档注释:为自定义数据类添加详细文档,说明字段含义和使用场景
通过以上方法,开发者可以在 Nautilus Trader 中高效地实现各种自定义数据类型,满足复杂交易策略的需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694