NannyML项目中的分层抽样与数据分块策略探讨
2025-07-05 13:23:01作者:冯梦姬Eddie
分层抽样在模型监控中的潜在应用
在机器学习模型监控领域,NannyML项目遇到了一个关于数据分块策略的有趣讨论。当处理二分类问题时,特别是类别不平衡的数据集时,传统的按顺序分块方法可能会导致某些数据块中缺乏少数类样本,从而影响性能指标的计算。
数据分块的基本原理
NannyML中的数据分块(Chunking)机制本质上是按照数据输入顺序进行切片处理,而非统计学意义上的抽样。例如,当使用基于大小的分块方法设置1000行为一个块时,系统会简单地将前1000行作为第一个块,接下来的1000行作为第二个块,以此类推。这种设计保持了数据的原始顺序,避免了人为引入的数据偏移。
类别不平衡带来的挑战
在二分类问题中,当某些数据块恰好不包含正类样本时,系统会返回NaN作为F1分数等指标值。这种现象在类别极度不平衡的数据集中尤为常见,导致大量数据实际上被丢弃,无法参与模型性能的评估。
技术解决方案的权衡
虽然分层抽样可以确保每个数据块中都包含正负类样本,但这种做法会破坏数据的原始顺序,可能引入人为的数据偏移,导致监控结果失真。NannyML团队建议,对于确实没有自然顺序要求的数据,可以考虑以下两种替代方案:
- 使用单个大数据块进行分析,特别是对于生产环境中长期收集的数据
- 自定义分块器,在分块前先对数据进行分层洗牌
实际应用建议
对于无序数据,建议采用较大的分块尺寸或直接指定分块数量为1。在参考数据方面,需要注意单一数据块可能导致阈值计算问题,这时可以考虑使用恒定阈值作为替代方案。
总结
NannyML项目在设计上优先考虑了数据监控的真实性和可靠性,通过保持数据原始顺序来避免人为引入偏差。虽然这可能在类别不平衡场景下带来一些计算上的挑战,但项目团队提供了灵活的解决方案和清晰的指导原则,帮助用户在保证结果准确性的前提下应对各种数据分布情况。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136