首页
/ NannyML项目中的分层抽样与数据分块策略探讨

NannyML项目中的分层抽样与数据分块策略探讨

2025-07-05 08:08:55作者:冯梦姬Eddie

分层抽样在模型监控中的潜在应用

在机器学习模型监控领域,NannyML项目遇到了一个关于数据分块策略的有趣讨论。当处理二分类问题时,特别是类别不平衡的数据集时,传统的按顺序分块方法可能会导致某些数据块中缺乏少数类样本,从而影响性能指标的计算。

数据分块的基本原理

NannyML中的数据分块(Chunking)机制本质上是按照数据输入顺序进行切片处理,而非统计学意义上的抽样。例如,当使用基于大小的分块方法设置1000行为一个块时,系统会简单地将前1000行作为第一个块,接下来的1000行作为第二个块,以此类推。这种设计保持了数据的原始顺序,避免了人为引入的数据偏移。

类别不平衡带来的挑战

在二分类问题中,当某些数据块恰好不包含正类样本时,系统会返回NaN作为F1分数等指标值。这种现象在类别极度不平衡的数据集中尤为常见,导致大量数据实际上被丢弃,无法参与模型性能的评估。

技术解决方案的权衡

虽然分层抽样可以确保每个数据块中都包含正负类样本,但这种做法会破坏数据的原始顺序,可能引入人为的数据偏移,导致监控结果失真。NannyML团队建议,对于确实没有自然顺序要求的数据,可以考虑以下两种替代方案:

  1. 使用单个大数据块进行分析,特别是对于生产环境中长期收集的数据
  2. 自定义分块器,在分块前先对数据进行分层洗牌

实际应用建议

对于无序数据,建议采用较大的分块尺寸或直接指定分块数量为1。在参考数据方面,需要注意单一数据块可能导致阈值计算问题,这时可以考虑使用恒定阈值作为替代方案。

总结

NannyML项目在设计上优先考虑了数据监控的真实性和可靠性,通过保持数据原始顺序来避免人为引入偏差。虽然这可能在类别不平衡场景下带来一些计算上的挑战,但项目团队提供了灵活的解决方案和清晰的指导原则,帮助用户在保证结果准确性的前提下应对各种数据分布情况。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133