LMDeploy v0.7.0发布:全面支持MoE架构与FP8量化
LMDeploy作为InternLM团队推出的高效推理引擎,专注于为大规模语言模型提供高性能的推理解决方案。最新发布的v0.7.0版本带来了多项重要更新,特别是在混合专家模型(MoE)支持和低精度计算方面取得了显著进展。
核心特性升级
本次更新最引人注目的是对MoE架构模型的全面支持。开发团队实现了MoE模型的W8A8量化方案,这意味着模型在保持较高精度的同时,能够显著降低计算资源消耗。特别是在DeepseekV3模型上实现了FP8量化支持,为超大规模模型的推理提供了更高效的解决方案。
在PyTorch引擎方面,团队优化了AWQ量化内核的性能表现,同时增加了对FP8 W8A8计算模式的支持。这些改进使得PyTorch后端在处理量化模型时能够获得更好的推理效率。
模型支持扩展
v0.7.0版本新增了对InternLM3系列模型的支持,包括密集模型和量化版本的适配。开发团队特别优化了InternLM3的聊天模板,使其能够更好地处理工具调用等复杂交互场景。同时,针对InternVL2模型的QK归一化问题进行了修复,提升了视觉-语言多模态模型的推理稳定性。
性能优化与架构改进
在底层架构方面,团队重构了异步引擎和TurboMind的IO处理机制,显著提升了高并发场景下的吞吐量。同时移除了线程安全相关的冗余代码,简化了系统架构。对于LoRA适配器,优化了相关内核的计算效率,使得参数高效微调模型的推理更加流畅。
针对不同硬件平台,本次更新增加了对Cambricon后端的新支持,扩展了LMDeploy的硬件适配范围。同时修复了在NVIDIA最新PyTorch容器镜像中的构建问题,确保了部署环境的兼容性。
功能完善与问题修复
在功能层面,v0.7.0版本完善了PPL(Perplexity)计算和logits获取的API接口,为模型评估提供了更可靠的工具。同时修复了XComposer2模型在较新版本Transformers上的兼容性问题,确保了多模态模型的稳定运行。
对于工具调用场景,更新了基础聊天模板以正确处理工具角色响应,使模型能够更好地处理工具调用流程。此外,还解决了MoE门控网络在DeepSeek V2模型上的计算问题,提升了专家路由的准确性。
总结
LMDeploy v0.7.0通过引入对MoE架构的全面支持和FP8量化技术,进一步巩固了其作为高效推理引擎的地位。无论是模型支持范围的扩展,还是底层架构的优化,都体现了团队在提升大模型推理效率方面的持续努力。这些改进使得LMDeploy能够更好地服务于各种规模的模型部署需求,为开发者提供更加强大和灵活的工具支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00