LMDeploy v0.7.0发布:全面支持MoE架构与FP8量化
LMDeploy作为InternLM团队推出的高效推理引擎,专注于为大规模语言模型提供高性能的推理解决方案。最新发布的v0.7.0版本带来了多项重要更新,特别是在混合专家模型(MoE)支持和低精度计算方面取得了显著进展。
核心特性升级
本次更新最引人注目的是对MoE架构模型的全面支持。开发团队实现了MoE模型的W8A8量化方案,这意味着模型在保持较高精度的同时,能够显著降低计算资源消耗。特别是在DeepseekV3模型上实现了FP8量化支持,为超大规模模型的推理提供了更高效的解决方案。
在PyTorch引擎方面,团队优化了AWQ量化内核的性能表现,同时增加了对FP8 W8A8计算模式的支持。这些改进使得PyTorch后端在处理量化模型时能够获得更好的推理效率。
模型支持扩展
v0.7.0版本新增了对InternLM3系列模型的支持,包括密集模型和量化版本的适配。开发团队特别优化了InternLM3的聊天模板,使其能够更好地处理工具调用等复杂交互场景。同时,针对InternVL2模型的QK归一化问题进行了修复,提升了视觉-语言多模态模型的推理稳定性。
性能优化与架构改进
在底层架构方面,团队重构了异步引擎和TurboMind的IO处理机制,显著提升了高并发场景下的吞吐量。同时移除了线程安全相关的冗余代码,简化了系统架构。对于LoRA适配器,优化了相关内核的计算效率,使得参数高效微调模型的推理更加流畅。
针对不同硬件平台,本次更新增加了对Cambricon后端的新支持,扩展了LMDeploy的硬件适配范围。同时修复了在NVIDIA最新PyTorch容器镜像中的构建问题,确保了部署环境的兼容性。
功能完善与问题修复
在功能层面,v0.7.0版本完善了PPL(Perplexity)计算和logits获取的API接口,为模型评估提供了更可靠的工具。同时修复了XComposer2模型在较新版本Transformers上的兼容性问题,确保了多模态模型的稳定运行。
对于工具调用场景,更新了基础聊天模板以正确处理工具角色响应,使模型能够更好地处理工具调用流程。此外,还解决了MoE门控网络在DeepSeek V2模型上的计算问题,提升了专家路由的准确性。
总结
LMDeploy v0.7.0通过引入对MoE架构的全面支持和FP8量化技术,进一步巩固了其作为高效推理引擎的地位。无论是模型支持范围的扩展,还是底层架构的优化,都体现了团队在提升大模型推理效率方面的持续努力。这些改进使得LMDeploy能够更好地服务于各种规模的模型部署需求,为开发者提供更加强大和灵活的工具支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









