LMDeploy v0.7.0发布:全面支持MoE架构与FP8量化
LMDeploy作为InternLM团队推出的高效推理引擎,专注于为大规模语言模型提供高性能的推理解决方案。最新发布的v0.7.0版本带来了多项重要更新,特别是在混合专家模型(MoE)支持和低精度计算方面取得了显著进展。
核心特性升级
本次更新最引人注目的是对MoE架构模型的全面支持。开发团队实现了MoE模型的W8A8量化方案,这意味着模型在保持较高精度的同时,能够显著降低计算资源消耗。特别是在DeepseekV3模型上实现了FP8量化支持,为超大规模模型的推理提供了更高效的解决方案。
在PyTorch引擎方面,团队优化了AWQ量化内核的性能表现,同时增加了对FP8 W8A8计算模式的支持。这些改进使得PyTorch后端在处理量化模型时能够获得更好的推理效率。
模型支持扩展
v0.7.0版本新增了对InternLM3系列模型的支持,包括密集模型和量化版本的适配。开发团队特别优化了InternLM3的聊天模板,使其能够更好地处理工具调用等复杂交互场景。同时,针对InternVL2模型的QK归一化问题进行了修复,提升了视觉-语言多模态模型的推理稳定性。
性能优化与架构改进
在底层架构方面,团队重构了异步引擎和TurboMind的IO处理机制,显著提升了高并发场景下的吞吐量。同时移除了线程安全相关的冗余代码,简化了系统架构。对于LoRA适配器,优化了相关内核的计算效率,使得参数高效微调模型的推理更加流畅。
针对不同硬件平台,本次更新增加了对Cambricon后端的新支持,扩展了LMDeploy的硬件适配范围。同时修复了在NVIDIA最新PyTorch容器镜像中的构建问题,确保了部署环境的兼容性。
功能完善与问题修复
在功能层面,v0.7.0版本完善了PPL(Perplexity)计算和logits获取的API接口,为模型评估提供了更可靠的工具。同时修复了XComposer2模型在较新版本Transformers上的兼容性问题,确保了多模态模型的稳定运行。
对于工具调用场景,更新了基础聊天模板以正确处理工具角色响应,使模型能够更好地处理工具调用流程。此外,还解决了MoE门控网络在DeepSeek V2模型上的计算问题,提升了专家路由的准确性。
总结
LMDeploy v0.7.0通过引入对MoE架构的全面支持和FP8量化技术,进一步巩固了其作为高效推理引擎的地位。无论是模型支持范围的扩展,还是底层架构的优化,都体现了团队在提升大模型推理效率方面的持续努力。这些改进使得LMDeploy能够更好地服务于各种规模的模型部署需求,为开发者提供更加强大和灵活的工具支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00