ChatGLM3微调实践:多机多卡训练问题分析与解决方案
2025-05-16 13:53:53作者:滕妙奇
问题背景
在ChatGLM3项目的微调实践中,用户尝试使用多机多卡进行模型训练时遇到了两个主要问题:一是官方示例脚本缺少对DeepSpeed配置参数的支持,二是在数据处理阶段出现了"conversations"字段缺失的错误。这些问题在单机单卡环境下不会出现,但在分布式训练场景下尤为突出。
问题分析
1. DeepSpeed参数支持问题
官方提供的finetune_hf.py脚本在设计时没有包含对DeepSpeed配置文件的参数解析功能。当用户按照文档说明尝试使用torchrun启动多卡训练并指定DeepSpeed配置文件时,脚本无法识别相关参数,导致训练无法正常启动。
2. 数据集路径配置错误
在分布式训练环境下,数据处理模块报出"KeyError: 'conversations'"错误。经过排查发现,这是由于数据集路径配置不当导致的。虽然数据集文件本身格式正确(包含conversations字段),但在多进程环境下,脚本未能正确加载数据集文件。
解决方案
1. 添加DeepSpeed参数支持
需要对finetune_hf.py脚本进行修改,增加DeepSpeed配置文件的参数解析功能。具体修改包括:
- 在main函数参数中添加deepspeed参数
- 将DeepSpeed配置传递给训练参数对象
- 确保训练器能够正确加载DeepSpeed配置
修改后的关键代码如下:
@app.command()
def main(
# 原有参数...
deepspeed: Annotated[str, typer.Option(help='deepspeed config file')],
local_rank: Annotated[int, typer.Option(help='')]=0,
):
# 原有代码...
if deepspeed:
ft_config.training_args.deepspeed = deepspeed
# 后续训练代码...
2. 数据集路径修正
确保数据集路径配置正确,特别是在分布式环境下:
- 检查数据集文件是否存在于指定路径
- 验证数据集文件格式是否符合要求
- 确保所有工作节点都能访问到数据集文件
正确的数据集格式示例:
{"conversations": [{"role": "user", "content": "类型#裙*风格#复古..."}, {"role": "assistant", "content": "裙子的领部使用..."}]}
实践建议
- 环境验证:在进行分布式训练前,先用单卡模式验证数据集加载和训练流程是否正常
- 路径检查:确保所有节点上的路径一致,特别是数据集路径最好使用绝对路径
- 资源配置:根据GPU数量调整batch size等参数,充分利用多卡优势
- 日志监控:分布式训练时注意监控各节点的日志,及时发现并解决问题
总结
ChatGLM3的微调功能在分布式环境下需要特别注意配置细节。通过添加DeepSpeed参数支持和确保数据集路径正确,可以顺利实现多机多卡训练。这些经验不仅适用于ChatGLM3项目,对于其他基于Transformers的大模型分布式训练也具有参考价值。
在实际应用中,建议开发者先在小规模数据上验证训练流程,再扩展到全量数据和更多计算节点,这样可以有效降低调试成本,提高训练效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111