ChatGLM3微调实践:多机多卡训练问题分析与解决方案
2025-05-16 03:16:46作者:滕妙奇
问题背景
在ChatGLM3项目的微调实践中,用户尝试使用多机多卡进行模型训练时遇到了两个主要问题:一是官方示例脚本缺少对DeepSpeed配置参数的支持,二是在数据处理阶段出现了"conversations"字段缺失的错误。这些问题在单机单卡环境下不会出现,但在分布式训练场景下尤为突出。
问题分析
1. DeepSpeed参数支持问题
官方提供的finetune_hf.py脚本在设计时没有包含对DeepSpeed配置文件的参数解析功能。当用户按照文档说明尝试使用torchrun启动多卡训练并指定DeepSpeed配置文件时,脚本无法识别相关参数,导致训练无法正常启动。
2. 数据集路径配置错误
在分布式训练环境下,数据处理模块报出"KeyError: 'conversations'"错误。经过排查发现,这是由于数据集路径配置不当导致的。虽然数据集文件本身格式正确(包含conversations字段),但在多进程环境下,脚本未能正确加载数据集文件。
解决方案
1. 添加DeepSpeed参数支持
需要对finetune_hf.py脚本进行修改,增加DeepSpeed配置文件的参数解析功能。具体修改包括:
- 在main函数参数中添加deepspeed参数
- 将DeepSpeed配置传递给训练参数对象
- 确保训练器能够正确加载DeepSpeed配置
修改后的关键代码如下:
@app.command()
def main(
# 原有参数...
deepspeed: Annotated[str, typer.Option(help='deepspeed config file')],
local_rank: Annotated[int, typer.Option(help='')]=0,
):
# 原有代码...
if deepspeed:
ft_config.training_args.deepspeed = deepspeed
# 后续训练代码...
2. 数据集路径修正
确保数据集路径配置正确,特别是在分布式环境下:
- 检查数据集文件是否存在于指定路径
- 验证数据集文件格式是否符合要求
- 确保所有工作节点都能访问到数据集文件
正确的数据集格式示例:
{"conversations": [{"role": "user", "content": "类型#裙*风格#复古..."}, {"role": "assistant", "content": "裙子的领部使用..."}]}
实践建议
- 环境验证:在进行分布式训练前,先用单卡模式验证数据集加载和训练流程是否正常
- 路径检查:确保所有节点上的路径一致,特别是数据集路径最好使用绝对路径
- 资源配置:根据GPU数量调整batch size等参数,充分利用多卡优势
- 日志监控:分布式训练时注意监控各节点的日志,及时发现并解决问题
总结
ChatGLM3的微调功能在分布式环境下需要特别注意配置细节。通过添加DeepSpeed参数支持和确保数据集路径正确,可以顺利实现多机多卡训练。这些经验不仅适用于ChatGLM3项目,对于其他基于Transformers的大模型分布式训练也具有参考价值。
在实际应用中,建议开发者先在小规模数据上验证训练流程,再扩展到全量数据和更多计算节点,这样可以有效降低调试成本,提高训练效率。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4