Giskard项目中如何用Ollama替换OpenAI GPT-4作为本地LLM评估器
2025-06-13 19:37:57作者:鲍丁臣Ursa
在机器学习模型评估领域,Giskard项目提供了一个强大的RAGET工具包,用于评估聊天机器人等AI系统的性能。默认情况下,Giskard使用OpenAI的GPT-4作为语言模型评估器,但出于数据隐私和成本考虑,许多开发者希望改用开源模型在本地运行。
本地LLM评估方案的优势
使用本地LLM作为评估器主要有三大优势:
- 数据隐私保护:敏感数据无需离开本地环境
- 成本控制:避免按API调用次数付费
- 定制灵活性:可根据需求选择不同开源模型
Ollama集成方案详解
Giskard提供了简洁的API来切换LLM后端。以下是完整的配置示例:
import giskard
# 配置Ollama作为LLM后端
api_base = "http://localhost:11434" # Ollama默认API地址
giskard.llm.set_llm_model("ollama/llama3.1",
disable_structured_output=True,
api_base=api_base)
giskard.llm.set_embedding_model("ollama/nomic-embed-text",
api_base=api_base)
这段代码会全局替换Giskard中所有LLM相关的调用,包括:
- 问题生成
- 答案评估
- 知识库处理
- 报告生成
常见问题与解决方案
1. 模型输出格式问题
使用Llama系列模型时,可能会遇到JSON格式解析错误。这是因为某些开源模型在生成结构化输出时不够稳定。推荐改用Qwen2.5等对结构化输出支持更好的模型。
2. 问题生成不完整
当生成测试问题时,可能会遇到部分问题生成失败的情况。这通常是由于:
- 模型对提示词的理解偏差
- 输出格式不符合预期
- 本地计算资源不足
解决方案包括:
- 明确指定生成语言(如
language="de"
) - 增加问题生成数量以补偿失败率
- 使用性能更强的本地模型
3. 评估报告生成错误
报告生成阶段可能出现类型错误,主要原因是:
- 评估结果数据结构不符合预期
- 模型返回的答案格式不规范
确保自定义的get_answer_fn
函数返回纯字符串或标准的AgentAnswer
对象,避免直接返回LangChain的原始消息类型。
最佳实践建议
- 模型选择:优先考虑对结构化输出支持好的模型如Qwen2.5
- 环境配置:在Jupyter环境中添加
nest_asyncio.apply()
调用 - 结果验证:使用
report.component_scores()
检查各组件评分 - 版本兼容:确保使用兼容的Giskard版本,避免第三方库冲突
通过以上配置和优化,开发者可以成功在Giskard项目中实现完全本地的LLM评估流程,兼顾评估质量和数据安全性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K