Giskard项目中如何用Ollama替换OpenAI GPT-4作为本地LLM评估器
2025-06-13 22:40:48作者:鲍丁臣Ursa
在机器学习模型评估领域,Giskard项目提供了一个强大的RAGET工具包,用于评估聊天机器人等AI系统的性能。默认情况下,Giskard使用OpenAI的GPT-4作为语言模型评估器,但出于数据隐私和成本考虑,许多开发者希望改用开源模型在本地运行。
本地LLM评估方案的优势
使用本地LLM作为评估器主要有三大优势:
- 数据隐私保护:敏感数据无需离开本地环境
- 成本控制:避免按API调用次数付费
- 定制灵活性:可根据需求选择不同开源模型
Ollama集成方案详解
Giskard提供了简洁的API来切换LLM后端。以下是完整的配置示例:
import giskard
# 配置Ollama作为LLM后端
api_base = "http://localhost:11434" # Ollama默认API地址
giskard.llm.set_llm_model("ollama/llama3.1",
disable_structured_output=True,
api_base=api_base)
giskard.llm.set_embedding_model("ollama/nomic-embed-text",
api_base=api_base)
这段代码会全局替换Giskard中所有LLM相关的调用,包括:
- 问题生成
- 答案评估
- 知识库处理
- 报告生成
常见问题与解决方案
1. 模型输出格式问题
使用Llama系列模型时,可能会遇到JSON格式解析错误。这是因为某些开源模型在生成结构化输出时不够稳定。推荐改用Qwen2.5等对结构化输出支持更好的模型。
2. 问题生成不完整
当生成测试问题时,可能会遇到部分问题生成失败的情况。这通常是由于:
- 模型对提示词的理解偏差
- 输出格式不符合预期
- 本地计算资源不足
解决方案包括:
- 明确指定生成语言(如
language="de") - 增加问题生成数量以补偿失败率
- 使用性能更强的本地模型
3. 评估报告生成错误
报告生成阶段可能出现类型错误,主要原因是:
- 评估结果数据结构不符合预期
- 模型返回的答案格式不规范
确保自定义的get_answer_fn函数返回纯字符串或标准的AgentAnswer对象,避免直接返回LangChain的原始消息类型。
最佳实践建议
- 模型选择:优先考虑对结构化输出支持好的模型如Qwen2.5
- 环境配置:在Jupyter环境中添加
nest_asyncio.apply()调用 - 结果验证:使用
report.component_scores()检查各组件评分 - 版本兼容:确保使用兼容的Giskard版本,避免第三方库冲突
通过以上配置和优化,开发者可以成功在Giskard项目中实现完全本地的LLM评估流程,兼顾评估质量和数据安全性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355