Giskard项目中如何用Ollama替换OpenAI GPT-4作为本地LLM评估器
2025-06-13 22:40:48作者:鲍丁臣Ursa
在机器学习模型评估领域,Giskard项目提供了一个强大的RAGET工具包,用于评估聊天机器人等AI系统的性能。默认情况下,Giskard使用OpenAI的GPT-4作为语言模型评估器,但出于数据隐私和成本考虑,许多开发者希望改用开源模型在本地运行。
本地LLM评估方案的优势
使用本地LLM作为评估器主要有三大优势:
- 数据隐私保护:敏感数据无需离开本地环境
- 成本控制:避免按API调用次数付费
- 定制灵活性:可根据需求选择不同开源模型
Ollama集成方案详解
Giskard提供了简洁的API来切换LLM后端。以下是完整的配置示例:
import giskard
# 配置Ollama作为LLM后端
api_base = "http://localhost:11434" # Ollama默认API地址
giskard.llm.set_llm_model("ollama/llama3.1",
disable_structured_output=True,
api_base=api_base)
giskard.llm.set_embedding_model("ollama/nomic-embed-text",
api_base=api_base)
这段代码会全局替换Giskard中所有LLM相关的调用,包括:
- 问题生成
- 答案评估
- 知识库处理
- 报告生成
常见问题与解决方案
1. 模型输出格式问题
使用Llama系列模型时,可能会遇到JSON格式解析错误。这是因为某些开源模型在生成结构化输出时不够稳定。推荐改用Qwen2.5等对结构化输出支持更好的模型。
2. 问题生成不完整
当生成测试问题时,可能会遇到部分问题生成失败的情况。这通常是由于:
- 模型对提示词的理解偏差
- 输出格式不符合预期
- 本地计算资源不足
解决方案包括:
- 明确指定生成语言(如
language="de") - 增加问题生成数量以补偿失败率
- 使用性能更强的本地模型
3. 评估报告生成错误
报告生成阶段可能出现类型错误,主要原因是:
- 评估结果数据结构不符合预期
- 模型返回的答案格式不规范
确保自定义的get_answer_fn函数返回纯字符串或标准的AgentAnswer对象,避免直接返回LangChain的原始消息类型。
最佳实践建议
- 模型选择:优先考虑对结构化输出支持好的模型如Qwen2.5
- 环境配置:在Jupyter环境中添加
nest_asyncio.apply()调用 - 结果验证:使用
report.component_scores()检查各组件评分 - 版本兼容:确保使用兼容的Giskard版本,避免第三方库冲突
通过以上配置和优化,开发者可以成功在Giskard项目中实现完全本地的LLM评估流程,兼顾评估质量和数据安全性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
用Python打造高效自动升级系统,提升软件迭代体验【免费下载】 轻松在UOS ARM系统上安装VLC播放器:一键离线安装包推荐【亲测免费】 Minigalaxy:一个简洁的GOG客户端为Linux用户设计【亲测免费】 NewHorizonMod 项目使用教程【亲测免费】 Pentaho Data Integration (webSpoon) 项目推荐【免费下载】 探索荧光显微图像去噪的利器:FMD数据集与深度学习模型 v-network-graph 项目安装和配置指南【亲测免费】 免费开源的VR全身追踪系统:April-Tag-VR-FullBody-Tracker GooglePhotosTakeoutHelper 项目使用教程 sqlserver2pgsql 项目推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Ascend Extension for PyTorch
Python
297
329
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
260
111
暂无简介
Dart
735
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
861
456
React Native鸿蒙化仓库
JavaScript
294
343
仓颉编译器源码及 cjdb 调试工具。
C++
148
880