Vico图表库2.1.0版本发布:性能优化与跨平台支持
Vico是一个功能强大的Android图表库,专注于提供流畅、高效的图表展示体验。它采用声明式API设计,支持多种图表类型和丰富的自定义选项,能够满足移动端数据可视化的各种需求。本次2.1.0版本的发布,不仅带来了性能上的显著提升,还首次引入了对Compose Multiplatform的支持,标志着Vico向跨平台开发迈出了重要一步。
核心性能优化
在2.1.0版本中,Vico团队对核心模块进行了多项性能优化。其中最重要的改进是对ExtraStore
机制的重新设计。在之前的版本中,所有通过CartesianLayer.transform
添加的额外数据都存储在CartesianChartModel.extraStore
中,这导致哈希计算变得非常耗时,因为这些数据对象通常体积较大。
新版本将这部分数据分离到了新引入的MeasuringContext.extraStore
中,显著减少了主存储的哈希计算时间。这一改动虽然对自定义动画CartesianLayer
实现构成了微小破坏性变更,但带来的性能提升非常可观。对于大多数标准使用场景,开发者无需做任何调整即可享受到这一优化带来的好处。
新增图表标记位置选项
为增强图表的可读性和美观性,2.1.0版本新增了DefaultCartesianMarker.LabelPosition.BelowPoint
定位选项。这个新选项允许标记标签显示在标记点的下方,特别适用于数据点密集或标签较长的场景,可以有效避免标签重叠问题,提升图表的整体可读性。
跨平台支持里程碑
本次更新的重头戏是新增的multiplatform
模块,它标志着Vico正式支持Compose Multiplatform技术栈。这个新模块基于原有的compose
和core
API构建,但针对跨平台环境进行了适配和简化。开发者现在可以使用同一套代码在Android、iOS和桌面平台上绘制一致的图表。
multiplatform
模块提供了两个可选的配套模块:multiplatform-m2
和multiplatform-m3
,分别对应Material Design 2和Material Design 3的样式主题。这种模块化设计让开发者可以根据项目需求灵活选择,同时保持代码的一致性。
需要注意的是,当前的跨平台支持仍处于实验阶段。与原生Android版本相比,multiplatform
模块暂时缺少ComponentShader
支持和ShapeComponent
的阴影效果,这些功能将在后续版本中逐步完善。
其他改进与调整
在样式细节方面,2.1.0版本调整了虚线样式的默认短划线和间隙长度,使虚线图表看起来更加协调。对于Compose预览功能,新版本改进了在非交互式预览中的同步处理机制,确保图表能够正确显示,这对提高开发效率很有帮助。
此外,新版本正式弃用了旧的Maven Central坐标(1.6.2版本之前使用的),开发者应该更新到新的依赖坐标以避免未来可能出现的兼容性问题。
升级建议
对于现有项目,升级到2.1.0版本通常只需更新依赖版本号即可。如果项目中使用了自定义的动画CartesianLayer
实现,则需要检查ExtraStore
的使用方式,确保正确处理了新的MeasuringContext.extraStore
。
对于考虑采用跨平台方案的新项目,可以开始尝试multiplatform
模块,但需要留意其实验性状态和当前的功能限制。随着Vico跨平台支持的不断完善,未来将提供更稳定、功能更全面的多平台图表解决方案。
总的来说,Vico 2.1.0版本在性能、功能和跨平台支持方面都取得了显著进步,为开发者提供了更强大、更灵活的数据可视化工具。无论是优化现有Android应用中的图表性能,还是构建全新的跨平台应用,这个版本都值得考虑。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









