首页
/ TensorRT 10.10.0 版本深度解析:AI推理引擎的重大升级

TensorRT 10.10.0 版本深度解析:AI推理引擎的重大升级

2025-06-04 12:53:41作者:凌朦慧Richard

TensorRT是NVIDIA推出的高性能深度学习推理优化器和运行时引擎,专为生产环境中的深度学习应用设计。它能够显著提升模型在NVIDIA GPU上的推理性能,广泛应用于计算机视觉、自然语言处理、推荐系统等领域。最新发布的TensorRT 10.10.0版本带来了一系列重要更新和功能增强,本文将为您详细解读这些技术改进。

演示程序(demoDiffusion)的显著增强

在10.10.0版本中,TensorRT对demoDiffusion演示程序进行了重要升级,主要体现在以下几个方面:

  1. fp16和fp8 LoRA支持:现在SDXL和FLUX管道全面支持fp16(16位浮点数)和fp8(8位浮点数)精度的LoRA(Low-Rank Adaptation)技术。LoRA是一种高效的模型微调方法,通过低秩矩阵分解来减少微调参数数量,同时保持模型性能。fp8支持的加入使得在保持模型质量的同时,能够进一步减少内存占用和提高计算效率。

  2. fp16 ControlNet支持:SDXL管道现在支持fp16精度的ControlNet。ControlNet是一种通过额外条件输入(如边缘图、深度图等)来控制生成过程的技术。fp16支持使得ControlNet在保持生成质量的同时,运行速度更快,内存占用更少。

这些改进使得生成式AI模型在TensorRT上的运行效率更高,特别适合需要实时生成高质量图像的应用场景。

插件系统的重大变革

TensorRT 10.10.0对插件系统进行了重要调整:

  1. 废弃PluginVersion和PluginCreatorVersion枚举类:这两个枚举类原本用于IPluginV2及其派生插件接口的版本控制。随着这些接口的全面废弃,相关版本控制机制也随之移除。这标志着TensorRT插件系统向更现代化架构的演进。

  2. 新增插件创建者递归查询API

    • C++ API新增了IPluginRegistry::getAllCreatorsRecursive()方法
    • Python API新增了IPluginRegistry.all_creators_recursive属性

这些API允许开发者从TensorRT插件注册表中递归获取所有已注册的插件创建者,包括层级注册的插件。这一改进大大简化了插件系统的管理和查询,使得开发者能够更全面地了解可用的插件资源。

ONNX解析器的优化改进

TensorRT的ONNX解析器在10.10.0版本中获得了多项优化:

  1. 日志输出优化:当ONNX网络同时包含插件(Plugins)和本地函数(LocalFunctions)时,解析器不再产生大量冗余日志信息,使得调试过程更加清晰高效。

  2. UINT8常量导入改进:现在QuantizeLinear和DequantizeLinear节点能够正确导入UINT8类型的常量。这对于量化模型的正确导入和运行至关重要,确保了模型精度与预期一致。

  3. 插件回退导入器增强:插件回退导入器现在能够从节点的domain字段读取命名空间信息,提高了插件识别的准确性。

这些改进使得TensorRT能够更准确地解析和转换ONNX模型,特别是包含量化操作和自定义插件的复杂模型。

Python插件示例支持Blackwell架构

10.10.0版本中的python_plugin示例现在支持编译目标到Blackwell架构。Blackwell是NVIDIA新一代GPU架构,这一支持意味着:

  1. 开发者可以在最新的硬件平台上开发和测试自定义Python插件
  2. 确保了插件代码在未来硬件上的兼容性和性能优化
  3. 为利用Blackwell架构的新特性提供了基础

这一更新对于希望在最新硬件上部署自定义推理解决方案的开发者尤为重要。

技术影响与应用前景

TensorRT 10.10.0的这些改进对AI推理领域有着深远影响:

  1. 生成式AI性能提升:demoDiffusion的增强使得Stable Diffusion等生成式模型能够在TensorRT上获得更高性能,为实时图像生成、视频编辑等应用开辟了新可能。

  2. 插件系统现代化:插件API的简化和废弃过时接口,使得开发者能够更专注于功能实现而非兼容性问题,加速了创新插件的开发。

  3. 模型兼容性增强:ONNX解析器的改进减少了模型转换过程中的问题,使得从训练框架到推理引擎的迁移更加顺畅。

  4. 未来硬件准备:Blackwell架构的支持确保了TensorRT生态系统能够充分利用新一代GPU的性能优势。

对于开发者而言,升级到TensorRT 10.10.0意味着能够构建更高效、更兼容、面向未来的AI推理解决方案。特别是在生成式AI和量化模型领域,新版本带来的性能提升和功能增强将直接转化为更好的用户体验和更低的运营成本。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
180
264
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60