LlamaParse 开源项目教程
项目介绍
LlamaParse 是一个由 LlamaIndex 创建的 API,旨在高效地解析和表示文件,以便在使用 LlamaIndex 框架进行高效检索和上下文增强时使用。LlamaParse 支持广泛的文件类型,包括 PDF、Word 文件、PowerPoint、Excel 表格和更多格式。它能够准确地解析嵌入的表格,提取视觉元素(如图表和图像),并支持多模态解析和分块。此外,LlamaParse 还允许用户输入自定义提示指令,以定制输出格式。
项目快速启动
安装依赖
首先,确保你已经安装了最新版本的 LlamaIndex。如果你是从 v0.9.x 升级,建议先卸载旧版本:
pip uninstall llama-index
然后安装最新版本的 LlamaIndex:
pip install -U llama-index --upgrade --no-cache-dir --force-reinstall
接下来,安装 LlamaParse 包:
pip install llama-parse
快速启动代码示例
以下是一个简单的代码示例,展示如何使用 LlamaParse 解析 PDF 文件:
import nest_asyncio
nest_asyncio.apply()
from llama_parse import LlamaParse
# 初始化 LlamaParse
parser = LlamaParse(
api_key="your_api_key_here", # 可以在环境变量中设置 LLAMA_CLOUD_API_KEY
result_type="markdown", # 支持 "markdown" 和 "text"
num_workers=4, # 如果传递多个文件,将分成 `num_workers` 个 API 调用
verbose=True,
language="en" # 可选,默认是英文
)
# 同步加载单个 PDF 文件
documents = parser.load_data("/path/to/your_file.pdf")
# 同步加载多个 PDF 文件
documents = parser.load_data(["/path/to/your_file1.pdf", "/path/to/your_file2.pdf"])
# 异步加载单个 PDF 文件
documents = await parser.aload_data("/path/to/your_file.pdf")
# 异步加载多个 PDF 文件
documents = await parser.aload_data(["/path/to/your_file1.pdf", "/path/to/your_file2.pdf"])
应用案例和最佳实践
案例1:文档解析与检索
在构建基于文档的检索系统时,LlamaParse 可以帮助你高效地解析和处理各种格式的文档。通过将解析后的文档数据存储在 LlamaIndex 中,你可以轻松地进行上下文增强和高效检索。
案例2:多模态数据处理
LlamaParse 支持多模态数据的解析和分块,适用于需要处理图像、表格和文本混合内容的应用场景。例如,在构建一个多模态问答系统时,LlamaParse 可以帮助你提取和处理文档中的视觉元素,从而提升系统的性能。
最佳实践
- 自定义解析:根据具体需求,使用自定义提示指令来定制解析输出格式。
- 批量处理:利用
num_workers参数进行并行处理,提高解析效率。 - 多语言支持:根据文档的语言设置
language参数,确保解析结果的准确性。
典型生态项目
LlamaIndex
LlamaIndex 是一个强大的框架,用于构建基于文档的检索和上下文增强系统。LlamaParse 直接集成在 LlamaIndex 中,为用户提供了高效的文档解析和处理能力。
LlamaCloud
LlamaCloud 是一个端到端的企业级 RAG 平台,提供了开箱即用的连接器、索引和检索功能。LlamaParse 是 LlamaCloud 的一部分,支持企业级的高容量和本地使用场景。
通过结合 LlamaParse 和 LlamaIndex/LlamaCloud,用户可以构建高性能的文档处理和检索系统,适用于各种复杂的应用场景。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00