LlamaParse 开源项目教程
项目介绍
LlamaParse 是一个由 LlamaIndex 创建的 API,旨在高效地解析和表示文件,以便在使用 LlamaIndex 框架进行高效检索和上下文增强时使用。LlamaParse 支持广泛的文件类型,包括 PDF、Word 文件、PowerPoint、Excel 表格和更多格式。它能够准确地解析嵌入的表格,提取视觉元素(如图表和图像),并支持多模态解析和分块。此外,LlamaParse 还允许用户输入自定义提示指令,以定制输出格式。
项目快速启动
安装依赖
首先,确保你已经安装了最新版本的 LlamaIndex。如果你是从 v0.9.x 升级,建议先卸载旧版本:
pip uninstall llama-index
然后安装最新版本的 LlamaIndex:
pip install -U llama-index --upgrade --no-cache-dir --force-reinstall
接下来,安装 LlamaParse 包:
pip install llama-parse
快速启动代码示例
以下是一个简单的代码示例,展示如何使用 LlamaParse 解析 PDF 文件:
import nest_asyncio
nest_asyncio.apply()
from llama_parse import LlamaParse
# 初始化 LlamaParse
parser = LlamaParse(
api_key="your_api_key_here", # 可以在环境变量中设置 LLAMA_CLOUD_API_KEY
result_type="markdown", # 支持 "markdown" 和 "text"
num_workers=4, # 如果传递多个文件,将分成 `num_workers` 个 API 调用
verbose=True,
language="en" # 可选,默认是英文
)
# 同步加载单个 PDF 文件
documents = parser.load_data("/path/to/your_file.pdf")
# 同步加载多个 PDF 文件
documents = parser.load_data(["/path/to/your_file1.pdf", "/path/to/your_file2.pdf"])
# 异步加载单个 PDF 文件
documents = await parser.aload_data("/path/to/your_file.pdf")
# 异步加载多个 PDF 文件
documents = await parser.aload_data(["/path/to/your_file1.pdf", "/path/to/your_file2.pdf"])
应用案例和最佳实践
案例1:文档解析与检索
在构建基于文档的检索系统时,LlamaParse 可以帮助你高效地解析和处理各种格式的文档。通过将解析后的文档数据存储在 LlamaIndex 中,你可以轻松地进行上下文增强和高效检索。
案例2:多模态数据处理
LlamaParse 支持多模态数据的解析和分块,适用于需要处理图像、表格和文本混合内容的应用场景。例如,在构建一个多模态问答系统时,LlamaParse 可以帮助你提取和处理文档中的视觉元素,从而提升系统的性能。
最佳实践
- 自定义解析:根据具体需求,使用自定义提示指令来定制解析输出格式。
- 批量处理:利用
num_workers参数进行并行处理,提高解析效率。 - 多语言支持:根据文档的语言设置
language参数,确保解析结果的准确性。
典型生态项目
LlamaIndex
LlamaIndex 是一个强大的框架,用于构建基于文档的检索和上下文增强系统。LlamaParse 直接集成在 LlamaIndex 中,为用户提供了高效的文档解析和处理能力。
LlamaCloud
LlamaCloud 是一个端到端的企业级 RAG 平台,提供了开箱即用的连接器、索引和检索功能。LlamaParse 是 LlamaCloud 的一部分,支持企业级的高容量和本地使用场景。
通过结合 LlamaParse 和 LlamaIndex/LlamaCloud,用户可以构建高性能的文档处理和检索系统,适用于各种复杂的应用场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00