BayesianOptimization项目中的二维函数可视化实现
2025-05-28 17:12:54作者:霍妲思
概述
在BayesianOptimization项目中,可视化是理解贝叶斯优化过程的重要工具。虽然官方文档主要展示了1D函数的可视化示例,但实际应用中经常需要处理多维参数空间的优化问题。本文将详细介绍如何在BayesianOptimization项目中实现2D函数的可视化,帮助用户更好地理解优化过程。
二维可视化实现原理
二维函数的可视化与一维情况类似,但需要处理更复杂的网格计算和绘图逻辑。核心思路是:
- 在参数空间创建网格点
- 使用高斯过程模型预测这些点的目标值
- 将预测结果绘制为等高线图或热图
- 标记已评估点和下一个建议点
具体实现步骤
1. 定义目标函数
首先需要定义一个二维目标函数,例如:
def black_box_function(x, y):
value = x**3 - (y - 1)**2 - x**2 - x*y
return max(value, 0)
2. 设置优化器参数
初始化BayesianOptimization优化器,设置参数边界:
pbounds = {'x': (2, 4), 'y': (-3, 3)}
optimizer = BayesianOptimization(
f=None,
pbounds=pbounds,
verbose=2,
random_state=1
)
3. 实现可视化函数
关键的可视化函数实现如下:
def plot_target_estimation(pbounds, optimizer, next_point, cycle):
# 创建网格
num_points = 300
x = np.linspace(pbounds['x'][0]-0.1, pbounds['x'][1]+0.1, num_points)
y = np.linspace(pbounds['y'][0]-0.1, pbounds['y'][1]+0.1, num_points)
xy = np.array([[x_i, y_j] for y_j in y for x_i in x])
X, Y = np.meshgrid(x, y)
# 创建图形
fig, axs = plt.subplots(constrained_layout=True, figsize=(4,4))
# 获取优化结果
res = optimizer.res
x_ = np.array([r["params"]['x'] for r in res])
y_ = np.array([r["params"]['y'] for r in res])
# 预测并绘制
Z_est = optimizer._gp.predict(xy).reshape(num_points, num_points)
axs.contourf(X, Y, Z_est, cmap=plt.cm.coolwarm)
axs.set_title(f'Target estimated, cycle n.{cycle+1}')
axs.scatter(x_, y_, c='red', s=80, edgecolors='black') # 已评估点
axs.scatter(next_point['x'], next_point['y'], c='white', s=80, edgecolors='black') # 建议点
return fig
4. 执行优化循环
将可视化函数集成到优化循环中:
utility = UtilityFunction(kind="ucb", kappa=2.5, xi=0.0)
MaxIterations = 10
for cycle in range(MaxIterations):
next_point = optimizer.suggest(utility)
fig = plot_target_estimation(pbounds, optimizer, next_point, cycle)
fig.savefig(f"Cycle {cycle+1}")
target = black_box_function(**next_point)
optimizer.register(params=next_point, target=target)
技术要点解析
-
网格创建:使用
np.linspace
在参数边界内创建均匀分布的点,然后通过np.meshgrid
生成二维网格。 -
高斯过程预测:调用
optimizer._gp.predict
方法获取网格点的预测值,注意需要将结果reshape为与网格相同的形状。 -
可视化效果:
- 使用
contourf
绘制填充等高线图,直观展示预测的目标函数表面 - 红色点标记已评估的参数点
- 白色点标记下一个建议评估的点
- 使用
-
迭代过程:每次优化迭代后更新图形,可以保存为图片或显示,便于观察优化过程。
实际应用建议
-
对于更复杂的参数空间,可以调整网格密度(
num_points
)以平衡精度和计算成本。 -
考虑使用不同的颜色映射(
cmap
)来增强可视化效果,例如viridis
或plasma
。 -
可以扩展可视化函数,同时显示预测的不确定性(方差)信息。
-
对于更高维的参数空间,可以考虑降维技术或成对参数的可视化。
通过这种二维可视化方法,用户可以直观地观察贝叶斯优化过程中高斯过程模型对目标函数的估计如何随着评估点的增加而改进,以及优化算法如何选择下一个评估点。这对于理解优化算法行为和调试参数空间非常有帮助。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193