BayesianOptimization项目中的二维函数可视化实现
2025-05-28 20:17:58作者:霍妲思
概述
在BayesianOptimization项目中,可视化是理解贝叶斯优化过程的重要工具。虽然官方文档主要展示了1D函数的可视化示例,但实际应用中经常需要处理多维参数空间的优化问题。本文将详细介绍如何在BayesianOptimization项目中实现2D函数的可视化,帮助用户更好地理解优化过程。
二维可视化实现原理
二维函数的可视化与一维情况类似,但需要处理更复杂的网格计算和绘图逻辑。核心思路是:
- 在参数空间创建网格点
- 使用高斯过程模型预测这些点的目标值
- 将预测结果绘制为等高线图或热图
- 标记已评估点和下一个建议点
具体实现步骤
1. 定义目标函数
首先需要定义一个二维目标函数,例如:
def black_box_function(x, y):
value = x**3 - (y - 1)**2 - x**2 - x*y
return max(value, 0)
2. 设置优化器参数
初始化BayesianOptimization优化器,设置参数边界:
pbounds = {'x': (2, 4), 'y': (-3, 3)}
optimizer = BayesianOptimization(
f=None,
pbounds=pbounds,
verbose=2,
random_state=1
)
3. 实现可视化函数
关键的可视化函数实现如下:
def plot_target_estimation(pbounds, optimizer, next_point, cycle):
# 创建网格
num_points = 300
x = np.linspace(pbounds['x'][0]-0.1, pbounds['x'][1]+0.1, num_points)
y = np.linspace(pbounds['y'][0]-0.1, pbounds['y'][1]+0.1, num_points)
xy = np.array([[x_i, y_j] for y_j in y for x_i in x])
X, Y = np.meshgrid(x, y)
# 创建图形
fig, axs = plt.subplots(constrained_layout=True, figsize=(4,4))
# 获取优化结果
res = optimizer.res
x_ = np.array([r["params"]['x'] for r in res])
y_ = np.array([r["params"]['y'] for r in res])
# 预测并绘制
Z_est = optimizer._gp.predict(xy).reshape(num_points, num_points)
axs.contourf(X, Y, Z_est, cmap=plt.cm.coolwarm)
axs.set_title(f'Target estimated, cycle n.{cycle+1}')
axs.scatter(x_, y_, c='red', s=80, edgecolors='black') # 已评估点
axs.scatter(next_point['x'], next_point['y'], c='white', s=80, edgecolors='black') # 建议点
return fig
4. 执行优化循环
将可视化函数集成到优化循环中:
utility = UtilityFunction(kind="ucb", kappa=2.5, xi=0.0)
MaxIterations = 10
for cycle in range(MaxIterations):
next_point = optimizer.suggest(utility)
fig = plot_target_estimation(pbounds, optimizer, next_point, cycle)
fig.savefig(f"Cycle {cycle+1}")
target = black_box_function(**next_point)
optimizer.register(params=next_point, target=target)
技术要点解析
-
网格创建:使用
np.linspace在参数边界内创建均匀分布的点,然后通过np.meshgrid生成二维网格。 -
高斯过程预测:调用
optimizer._gp.predict方法获取网格点的预测值,注意需要将结果reshape为与网格相同的形状。 -
可视化效果:
- 使用
contourf绘制填充等高线图,直观展示预测的目标函数表面 - 红色点标记已评估的参数点
- 白色点标记下一个建议评估的点
- 使用
-
迭代过程:每次优化迭代后更新图形,可以保存为图片或显示,便于观察优化过程。
实际应用建议
-
对于更复杂的参数空间,可以调整网格密度(
num_points)以平衡精度和计算成本。 -
考虑使用不同的颜色映射(
cmap)来增强可视化效果,例如viridis或plasma。 -
可以扩展可视化函数,同时显示预测的不确定性(方差)信息。
-
对于更高维的参数空间,可以考虑降维技术或成对参数的可视化。
通过这种二维可视化方法,用户可以直观地观察贝叶斯优化过程中高斯过程模型对目标函数的估计如何随着评估点的增加而改进,以及优化算法如何选择下一个评估点。这对于理解优化算法行为和调试参数空间非常有帮助。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
403
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219