MLRun v1.8.0-rc34 版本发布:模型监控与告警系统优化
MLRun 是一个开源的机器学习运维平台,旨在简化机器学习工作流的构建、部署和管理过程。作为数据科学家和机器学习工程师的强大工具,MLRun 提供了从数据准备到模型部署的全生命周期管理能力。本次发布的 v1.8.0-rc34 版本主要聚焦于模型监控和告警系统的优化改进。
模型监控功能增强
在本次更新中,MLRun 对模型监控功能进行了两项重要改进:
-
应用结果序列化:在模型评估过程中,现在会将应用结果进行序列化处理。这一改进使得评估结果能够被更有效地存储和传输,为后续的分析和处理提供了便利。序列化后的数据可以保持结构完整性,避免在传输或存储过程中出现数据丢失或格式变化的问题。
-
函数标识符升级:将模型监控中使用的函数哈希标识替换为函数唯一标识符(UID)。这一变更提高了系统的稳定性和可读性,因为UID比哈希值更具描述性,且在系统重构或函数更新时能保持更好的稳定性。对于开发者而言,这意味着在调试和追踪问题时能够更直观地识别相关函数。
告警系统容量提升
告警系统是MLRun监控能力的重要组成部分,本次更新对其进行了两项关键优化:
-
告警数量上限提升:将系统支持的告警数量上限从原有水平提升至20,000条。这一扩容使得MLRun能够应对更大规模的机器学习应用场景,满足企业级部署的需求。
-
缓存大小可配置化:新增了告警系统缓存大小的配置选项。系统管理员现在可以根据实际部署环境和性能需求,灵活调整缓存大小,在内存使用和系统响应速度之间取得最佳平衡。这一改进特别适合资源受限或需要高性能的场景。
问题修复与文档完善
除了功能增强外,本次发布还包含了一些重要的修复和改进:
-
修复了模型监控测试用例
test_count_app中存在的问题,确保了测试覆盖的完整性和准确性。 -
完善了分页参数
page_size的文档说明,使开发者能够更清晰地理解和使用这一功能。正确的文档对于API的使用体验至关重要,特别是对于新用户而言。
总结
MLRun v1.8.0-rc34版本虽然是一个预发布版本,但已经展现出了在模型监控和告警系统方面的显著进步。这些改进不仅增强了系统的稳定性和扩展性,也为用户提供了更灵活的配置选项。对于正在使用或考虑采用MLRun的团队来说,这个版本值得关注和评估,特别是那些需要大规模模型监控能力的企业级应用场景。
随着机器学习运维(MLOps)的重要性日益凸显,MLRun持续优化其监控和管理能力,帮助团队更有效地部署和维护生产环境中的机器学习模型。本次更新再次证明了该项目在MLOps领域的创新能力和对用户需求的快速响应。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00