GraphRAG项目中的JSON格式输出问题分析与解决方案
2025-05-08 22:14:51作者:翟萌耘Ralph
问题背景
在GraphRAG项目中,用户在使用--emit json
参数运行索引命令时遇到了一个关键问题。当指定输出为JSON格式时,系统仍然尝试查找并加载Parquet格式文件,导致流程中断。这一现象揭示了项目中文件格式处理逻辑存在的不一致性。
问题详细分析
问题的核心在于GraphRAG的代码实现中,部分函数对文件格式的处理采用了硬编码方式。具体表现为:
- 在
run.py
文件中,load_table_from_storage
和inject_workflow_data_dependencies
等函数默认查找.parquet
后缀的文件 - 虽然系统成功生成了JSON格式的输出文件(如
create_base_text_units.json
),但后续流程仍尝试加载不存在的Parquet文件 - 这种不一致性导致整个索引流程在创建基础文本单元后立即失败
技术原理
GraphRAG作为一个基于图的检索增强生成框架,其数据处理流程涉及多种文件格式:
- Parquet:列式存储格式,适合大规模数据分析,具有高效的压缩和查询性能
- JSON:轻量级数据交换格式,易于人类阅读和编写,但解析效率较低
在数据处理流程中,系统需要保持输入输出格式的一致性。当用户指定JSON格式输出时,整个流程的各环节都应适配这种格式,而非混合使用不同格式。
解决方案
针对这一问题,社区贡献者提出了两种解决方案:
核心代码修改方案
- 修改
load_table_from_storage
函数:
async def load_table_from_storage(name: str) -> pd.DataFrame:
if not await storage.has(name):
msg = f"Could not find {name} in storage!"
raise ValueError(msg)
try:
log.info("read table from storage: %s", name)
# 读取JSON数据而非Parquet
content = await storage.get(name, encoding='utf-8')
json_data = [json.loads(line) for line in content.splitlines() if line.strip()]
return pd.DataFrame(json_data)
except Exception:
log.exception("error loading table from storage: %s", name)
raise
- 更新
inject_workflow_data_dependencies
函数:
async def inject_workflow_data_dependencies(workflow: Workflow) -> None:
workflow.add_table(DEFAULT_INPUT_NAME, dataset)
deps = workflow_dependencies[workflow.name]
log.info("dependencies for %s: %s", workflow.name, deps)
for id in deps:
workflow_id = f"workflow:{id}"
# 加载JSON文件而非Parquet
table = await load_table_from_storage(f"{id}.json")
workflow.add_table(workflow_id, table)
查询功能适配方案
对于查询功能,也需要相应修改以支持JSON格式:
- 本地搜索功能修改:
def run_local_search(data_dir: str | None, root_dir: str | None, ...):
# 使用JSON文件读取替代Parquet
def read_json_file(file_path):
with open(file_path, 'r') as f:
return pd.DataFrame([json.loads(line) for line in f if line.strip()])
final_nodes = read_json_file(data_path / "create_final_nodes.json")
final_community_reports = read_json_file(data_path / "create_final_community_reports.json")
# 其他文件读取...
- 全局搜索功能修改:
def run_global_search(data_dir: str | None, root_dir: str | None, ...):
# 同样采用JSON文件读取
def read_json_file(file_path):
with open(file_path, 'r') as f:
return pd.DataFrame([json.loads(line) for line in f if line.strip()])
final_nodes = read_json_file(data_path / "create_final_nodes.json")
final_entities = read_json_file(data_path / "create_final_entities.json")
# 其他处理逻辑...
项目维护方向
值得注意的是,项目官方最终决定统一使用Parquet格式作为标准输出格式。这一决策可能基于以下考虑:
- 性能因素:Parquet在大规模数据处理中具有明显优势
- 维护成本:支持多种格式会增加代码复杂性和测试负担
- 使用场景:GraphRAG主要面向生产环境,JSON的易读性优势在此场景下不明显
总结与建议
对于GraphRAG用户,建议:
- 遵循项目官方规范,使用Parquet格式进行数据处理
- 如需JSON格式,可参考社区贡献的修改方案,但需注意这些修改可能不被官方版本支持
- 在自定义修改前,充分评估格式选择对系统性能和维护成本的影响
这一问题的出现和解决过程,体现了开源项目中功能需求与技术决策之间的平衡,也为开发者提供了关于数据格式选择的实际参考案例。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133