River项目中的随机采样器训练分布追踪机制解析
2025-06-08 00:50:45作者:盛欣凯Ernestine
在机器学习的不平衡分类问题中,随机采样技术(Random Sampling)是常用的数据平衡手段。River项目作为一款优秀的在线机器学习库,其imblearn模块提供了RandomUnderSampler、RandomOverSampler和RandomSampler三种随机采样器。这些采样器在在线学习场景下有着独特的设计考量。
在线采样与离线采样的本质区别
与传统批量学习不同,在线学习环境下数据以流式方式到达,这使得采样过程面临两个核心挑战:
- 数据分布的不确定性:由于数据是动态到达的,我们无法预先知道完整的数据分布
- 采样效果的实时性:采样操作需要即时完成,无法等待完整数据集
在River的实现中,RandomSampler及其变种通过维护一个_actual_dist属性来追踪实际观察到的类别分布。这个设计很好地解决了第一个挑战,让模型能够实时了解数据流的真实分布情况。
训练分布追踪的必要性
在实际应用中,仅仅知道原始数据分布是不够的。由于在线采样的特性,模型实际训练时使用的数据分布可能与期望的采样分布存在偏差。这种偏差可能来自:
- 数据到达顺序的影响
- 采样概率的随机性
- 概念漂移导致的分布变化
因此,引入_trained_on_dist属性具有重要价值。这个属性可以精确记录模型实际训练时使用的数据分布,为以下场景提供支持:
- 模型性能分析:将预测表现与训练分布关联分析
- 采样效果评估:对比期望分布与实际训练分布的差异
- 动态调整策略:基于训练分布反馈调整采样参数
实现细节与技术考量
在技术实现上,_trained_on_dist的维护需要考虑:
- 更新频率:每个样本处理后即时更新
- 计算效率:使用增量式计算避免重复统计
- 内存占用:与
_actual_dist保持相同的存储结构
对于多分类问题,这两个分布属性都应支持向量化表示。在实际应用中,开发者可以通过比较这两个分布来:
- 评估采样策略的有效性
- 检测数据流的分布变化
- 调试模型性能问题
实际应用建议
在使用River的采样器时,建议开发者:
- 定期记录两个分布属性的变化情况
- 设置分布差异的告警阈值
- 考虑将分布差异作为自适应采样策略的输入
这种设计模式不仅适用于分类问题,经过适当改造后也可应用于回归问题的样本加权场景,体现了在线机器学习系统设计的灵活性和可扩展性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758