在GLM-4项目中集成Ollama作为推理后端的实践指南
2025-06-03 12:47:52作者:沈韬淼Beryl
背景介绍
随着大语言模型(LLM)技术的快速发展,本地化部署和运行模型变得越来越重要。Ollama作为一个轻量级的本地模型运行框架,提供了便捷的模型管理和推理服务能力。本文将详细介绍如何在GLM-4项目的composite_demo组件中使用Ollama作为推理后端。
Ollama简介
Ollama是一个开源的本地大语言模型运行框架,具有以下特点:
- 支持多种主流开源模型
- 提供简单的命令行管理界面
- 支持模型版本管理
- 可实现本地高效推理
集成方案
方案设计
由于Ollama原生支持标准兼容的API格式,我们可以通过以下两种方式实现集成:
-
直接使用Ollama的标准兼容API:
- Ollama默认提供与标准API兼容的接口
- 可以直接修改composite_demo的API配置指向本地Ollama服务
-
构建自定义FastAPI适配层:
- 开发一个轻量级FastAPI服务
- 该服务接收标准请求并转发给Ollama
- 对响应进行格式转换后返回
实施步骤
1. 安装和配置Ollama
首先需要在运行环境安装Ollama:
curl -fsSL https://ollama.com/install.sh | sh
然后下载GLM-4模型:
ollama pull glm-4
2. 启动Ollama服务
运行以下命令启动服务:
ollama serve
默认情况下,Ollama会在11434端口提供服务。
3. 配置composite_demo
修改composite_demo的配置文件,将API端点指向本地Ollama服务:
api_base: "http://localhost:11434/v1"
model: "glm-4"
4. 验证集成
发送测试请求验证服务是否正常工作:
import openai
client = openai.OpenAI(base_url="http://localhost:11434/v1")
response = client.chat.completions.create(
model="glm-4",
messages=[{"role": "user", "content": "你好"}]
)
print(response.choices[0].message.content)
性能优化建议
-
模型量化:
- 使用Ollama支持的GGUF量化格式
- 根据硬件选择适当的量化级别(如Q4_K_M)
-
批处理优化:
- 调整Ollama的批处理参数
- 根据GPU显存设置合适的并发数
-
硬件加速:
- 启用CUDA加速(NVIDIA GPU)
- 使用Metal加速(Mac设备)
常见问题解决
-
端口冲突:
- 检查11434端口是否被占用
- 可通过
ollama serve --port <新端口>指定新端口
-
模型加载失败:
- 确认模型名称正确
- 检查磁盘空间是否充足
-
响应速度慢:
- 降低量化级别
- 检查硬件资源使用情况
总结
通过将Ollama集成到GLM-4项目的composite_demo组件中,我们实现了本地化、高效的模型推理能力。这种方案特别适合需要数据隐私保护、低延迟响应的应用场景。开发者可以根据实际需求调整配置参数,获得最佳的性能体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896