在GLM-4项目中集成Ollama作为推理后端的实践指南
2025-06-03 12:47:52作者:沈韬淼Beryl
背景介绍
随着大语言模型(LLM)技术的快速发展,本地化部署和运行模型变得越来越重要。Ollama作为一个轻量级的本地模型运行框架,提供了便捷的模型管理和推理服务能力。本文将详细介绍如何在GLM-4项目的composite_demo组件中使用Ollama作为推理后端。
Ollama简介
Ollama是一个开源的本地大语言模型运行框架,具有以下特点:
- 支持多种主流开源模型
- 提供简单的命令行管理界面
- 支持模型版本管理
- 可实现本地高效推理
集成方案
方案设计
由于Ollama原生支持标准兼容的API格式,我们可以通过以下两种方式实现集成:
-
直接使用Ollama的标准兼容API:
- Ollama默认提供与标准API兼容的接口
- 可以直接修改composite_demo的API配置指向本地Ollama服务
-
构建自定义FastAPI适配层:
- 开发一个轻量级FastAPI服务
- 该服务接收标准请求并转发给Ollama
- 对响应进行格式转换后返回
实施步骤
1. 安装和配置Ollama
首先需要在运行环境安装Ollama:
curl -fsSL https://ollama.com/install.sh | sh
然后下载GLM-4模型:
ollama pull glm-4
2. 启动Ollama服务
运行以下命令启动服务:
ollama serve
默认情况下,Ollama会在11434端口提供服务。
3. 配置composite_demo
修改composite_demo的配置文件,将API端点指向本地Ollama服务:
api_base: "http://localhost:11434/v1"
model: "glm-4"
4. 验证集成
发送测试请求验证服务是否正常工作:
import openai
client = openai.OpenAI(base_url="http://localhost:11434/v1")
response = client.chat.completions.create(
model="glm-4",
messages=[{"role": "user", "content": "你好"}]
)
print(response.choices[0].message.content)
性能优化建议
-
模型量化:
- 使用Ollama支持的GGUF量化格式
- 根据硬件选择适当的量化级别(如Q4_K_M)
-
批处理优化:
- 调整Ollama的批处理参数
- 根据GPU显存设置合适的并发数
-
硬件加速:
- 启用CUDA加速(NVIDIA GPU)
- 使用Metal加速(Mac设备)
常见问题解决
-
端口冲突:
- 检查11434端口是否被占用
- 可通过
ollama serve --port <新端口>指定新端口
-
模型加载失败:
- 确认模型名称正确
- 检查磁盘空间是否充足
-
响应速度慢:
- 降低量化级别
- 检查硬件资源使用情况
总结
通过将Ollama集成到GLM-4项目的composite_demo组件中,我们实现了本地化、高效的模型推理能力。这种方案特别适合需要数据隐私保护、低延迟响应的应用场景。开发者可以根据实际需求调整配置参数,获得最佳的性能体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1