TorchSharp 开源项目教程
2026-01-18 10:04:15作者:滑思眉Philip
项目介绍
TorchSharp 是一个基于 .NET 的开源项目,它提供了对 PyTorch 深度学习框架的 .NET 绑定。通过 TorchSharp,开发者可以在 .NET 环境中使用 PyTorch 的功能,包括张量操作、神经网络构建和训练等。这个项目的目标是让 .NET 开发者能够无缝地使用 PyTorch 进行深度学习开发,而无需切换到 Python 环境。
项目快速启动
安装
首先,确保你已经安装了 .NET SDK。然后,你可以通过 NuGet 安装 TorchSharp:
dotnet add package TorchSharp
示例代码
以下是一个简单的示例,展示如何使用 TorchSharp 进行张量操作:
using TorchSharp;
using static TorchSharp.torch;
class Program
{
static void Main(string[] args)
{
// 创建一个 2x3 的张量
var tensor = ones(new long[] { 2, 3 });
Console.WriteLine(tensor);
}
}
应用案例和最佳实践
图像分类
TorchSharp 可以用于构建和训练图像分类模型。以下是一个简单的图像分类示例:
using TorchSharp;
using static TorchSharp.torch;
using static TorchSharp.torchvision;
class Program
{
static void Main(string[] args)
{
var transform = transforms.Compose(
new[]
{
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()
});
var dataset = datasets.ImageFolder("path/to/dataset", transform);
var dataloader = torch.utils.data.DataLoader(dataset, batchSize: 32, shuffle: true);
var model = new MyCNN();
var optimizer = optim.SGD(model.parameters(), lr: 0.01);
for (int epoch = 0; epoch < 10; epoch++)
{
foreach (var (inputs, labels) in dataloader)
{
optimizer.zero_grad();
var outputs = model.forward(inputs);
var loss = nll_loss(outputs, labels);
loss.backward();
optimizer.step();
}
}
}
}
文本生成
TorchSharp 也可以用于构建和训练文本生成模型。以下是一个简单的文本生成示例:
using TorchSharp;
using static TorchSharp.torch;
class Program
{
static void Main(string[] args)
{
var dataset = new TextDataset("path/to/textfile");
var dataloader = torch.utils.data.DataLoader(dataset, batchSize: 32, shuffle: true);
var model = new MyRNN();
var optimizer = optim.Adam(model.parameters(), lr: 0.001);
for (int epoch = 0; epoch < 10; epoch++)
{
foreach (var (inputs, targets) in dataloader)
{
optimizer.zero_grad();
var outputs = model.forward(inputs);
var loss = cross_entropy_loss(outputs, targets);
loss.backward();
optimizer.step();
}
}
}
}
典型生态项目
ML.NET
ML.NET 是一个开源的跨平台机器学习框架,它与 TorchSharp 结合使用可以提供更强大的机器学习功能。开发者可以使用 ML.NET 进行数据处理和模型部署,同时利用 TorchSharp 进行深度学习模型的训练和推理。
TensorFlow.NET
TensorFlow.NET 是 TensorFlow 的 .NET 绑定,它与 TorchSharp 类似,提供了在 .NET 环境中使用 TensorFlow 的能力。开发者可以根据具体需求选择使用 TorchSharp 或 TensorFlow.NET,或者结合两者使用,以实现更复杂的机器学习任务。
通过这些生态项目的结合,.NET 开发者可以构建出功能强大且高效的深度学习应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248