在Grafana Tanka中部署Kong Ingress Controller的挑战与解决方案
背景介绍
Grafana Tanka是一个基于Jsonnet的Kubernetes配置管理工具,它允许开发者以声明式的方式管理Kubernetes资源。在实际使用中,用户经常需要通过Tanka来部署各种Helm chart,其中就包括流行的Kong Ingress Controller。
问题描述
当尝试通过Tanka部署Kong Ingress Controller时,用户遇到了一个典型的技术挑战。Kong官方提供的Helm chart实际上是一个"umbrella chart"(伞形图表),它会同时部署Ingress Controller和API Gateway两个组件。这种设计导致了CRD(Custom Resource Definition)资源的重复生成问题。
具体表现为:
- 当设置
includeCRDs: false时,Kong无法正确安装,因为缺少必要的CRD定义 - 当设置
includeCRDs: true时,Tanka会报错,因为相同的CRD被生成了两次
技术分析
这个问题的根源在于Kong Helm chart的设计架构。该chart实际上会调用"kong"子chart两次:
- 第一次调用用于部署Ingress Controller
- 第二次调用用于部署API Gateway
每次调用都会生成相同的CRD资源,而Tanka的默认行为是不允许资源重复定义,这是为了防止配置歧义和潜在的错误。例如,如果有两个Deployment定义,一个设置replicas:1,另一个设置replicas:10,Tanka无法自动决定应该采用哪个值。
解决方案
经过技术验证,目前有三种可行的解决方案:
方案一:直接使用kong子chart
放弃使用umbrella chart,改为直接调用kong子chart两次,分别配置Controller和Gateway组件。这种方案的优势是完全可控,但缺点是如果上游chart发生变化,可能需要手动调整。
方案二:分两次调用umbrella chart
通过两次调用umbrella chart,每次只启用一个组件(Controller或Gateway),并只在其中一次调用中包含CRD。这种方法保持了与上游chart的兼容性,但代码看起来有些冗余。
方案三:修改Tanka行为(不推荐)
理论上可以修改Tanka使其允许资源重复,但这会破坏Tanka的设计原则,可能导致其他潜在问题,因此不推荐使用。
最佳实践
基于上述分析,推荐采用方案二作为最佳实践。具体实现代码如下:
local tanka = import 'github.com/grafana/jsonnet-libs/tanka-util/main.libsonnet';
local helm = tanka.helm.new(std.thisFile);
{
_config:: {
ns: 'kong',
},
kong_ingress_controller: helm.template('kong', './charts/ingress/', {
namespace: $._config.ns,
includeCRDs: true,
values+: {
gateway+: { enabled: false },
},
}),
kong_ingress_gateway: helm.template('kong', './charts/ingress/', {
namespace: $._config.ns,
includeCRDs: false,
values+: {
controller+: { enabled: false },
},
}),
kong_namespace: {
apiVersion: 'v1',
kind: 'Namespace',
metadata: {
name: $._config.ns,
},
},
}
这种实现方式:
- 保持了与上游chart的兼容性
- 通过values配置明确区分了Controller和Gateway的部署
- 只在Controller部署中包含CRD定义
- 保持了Tanka的声明式特性
总结
在使用Tanka部署复杂Helm chart时,特别是那些采用umbrella设计的chart时,可能会遇到资源重复定义的问题。通过理解chart的内部结构和Tanka的设计原则,我们可以找到既保持上游兼容性又符合Tanka最佳实践的解决方案。对于Kong Ingress Controller的部署,推荐采用分两次调用umbrella chart的方案,这既解决了CRD重复的问题,又保持了配置的清晰性和可维护性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00