在Grafana Tanka中部署Kong Ingress Controller的挑战与解决方案
背景介绍
Grafana Tanka是一个基于Jsonnet的Kubernetes配置管理工具,它允许开发者以声明式的方式管理Kubernetes资源。在实际使用中,用户经常需要通过Tanka来部署各种Helm chart,其中就包括流行的Kong Ingress Controller。
问题描述
当尝试通过Tanka部署Kong Ingress Controller时,用户遇到了一个典型的技术挑战。Kong官方提供的Helm chart实际上是一个"umbrella chart"(伞形图表),它会同时部署Ingress Controller和API Gateway两个组件。这种设计导致了CRD(Custom Resource Definition)资源的重复生成问题。
具体表现为:
- 当设置
includeCRDs: false时,Kong无法正确安装,因为缺少必要的CRD定义 - 当设置
includeCRDs: true时,Tanka会报错,因为相同的CRD被生成了两次
技术分析
这个问题的根源在于Kong Helm chart的设计架构。该chart实际上会调用"kong"子chart两次:
- 第一次调用用于部署Ingress Controller
- 第二次调用用于部署API Gateway
每次调用都会生成相同的CRD资源,而Tanka的默认行为是不允许资源重复定义,这是为了防止配置歧义和潜在的错误。例如,如果有两个Deployment定义,一个设置replicas:1,另一个设置replicas:10,Tanka无法自动决定应该采用哪个值。
解决方案
经过技术验证,目前有三种可行的解决方案:
方案一:直接使用kong子chart
放弃使用umbrella chart,改为直接调用kong子chart两次,分别配置Controller和Gateway组件。这种方案的优势是完全可控,但缺点是如果上游chart发生变化,可能需要手动调整。
方案二:分两次调用umbrella chart
通过两次调用umbrella chart,每次只启用一个组件(Controller或Gateway),并只在其中一次调用中包含CRD。这种方法保持了与上游chart的兼容性,但代码看起来有些冗余。
方案三:修改Tanka行为(不推荐)
理论上可以修改Tanka使其允许资源重复,但这会破坏Tanka的设计原则,可能导致其他潜在问题,因此不推荐使用。
最佳实践
基于上述分析,推荐采用方案二作为最佳实践。具体实现代码如下:
local tanka = import 'github.com/grafana/jsonnet-libs/tanka-util/main.libsonnet';
local helm = tanka.helm.new(std.thisFile);
{
_config:: {
ns: 'kong',
},
kong_ingress_controller: helm.template('kong', './charts/ingress/', {
namespace: $._config.ns,
includeCRDs: true,
values+: {
gateway+: { enabled: false },
},
}),
kong_ingress_gateway: helm.template('kong', './charts/ingress/', {
namespace: $._config.ns,
includeCRDs: false,
values+: {
controller+: { enabled: false },
},
}),
kong_namespace: {
apiVersion: 'v1',
kind: 'Namespace',
metadata: {
name: $._config.ns,
},
},
}
这种实现方式:
- 保持了与上游chart的兼容性
- 通过values配置明确区分了Controller和Gateway的部署
- 只在Controller部署中包含CRD定义
- 保持了Tanka的声明式特性
总结
在使用Tanka部署复杂Helm chart时,特别是那些采用umbrella设计的chart时,可能会遇到资源重复定义的问题。通过理解chart的内部结构和Tanka的设计原则,我们可以找到既保持上游兼容性又符合Tanka最佳实践的解决方案。对于Kong Ingress Controller的部署,推荐采用分两次调用umbrella chart的方案,这既解决了CRD重复的问题,又保持了配置的清晰性和可维护性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00