在BoTorch中使用已训练GP的均值和协方差函数构建新GP模型
2025-06-25 13:49:24作者:段琳惟
背景介绍
在贝叶斯优化和机器学习领域,高斯过程(Gaussian Process, GP)是一种强大的非参数模型。BoTorch作为基于PyTorch的贝叶斯优化库,提供了灵活的高斯过程建模能力。本文将探讨一个在BoTorch中使用已训练GP模型的均值和协方差函数来构建新GP模型的技术实现。
问题场景
假设我们有以下三个高斯过程模型:
- gp1:基于小数据集训练
- gp2:基于大数据集训练,与gp1来自相同领域
- gp3:目标是使用gp2训练好的均值函数和协方差函数,同时基于gp1的小数据集进行训练(一种迁移学习的方法)
技术实现
基础模型构建
首先,我们需要定义基础的GP训练函数:
def train_gp(train_X, train_Y, mean_module=None, covar_module=None, bounds=None):
if bounds.ndim == 1:
bounds = bounds.reshape(-1, 1)
d = train_X.shape[1]
input_transform = Normalize(d=d, bounds=bounds) if bounds is not None else Normalize(d=d)
gp = SingleTaskGP(
train_X=train_X,
train_Y=train_Y,
mean_module=mean_module,
covar_module=covar_module,
outcome_transform=Standardize(m=1),
input_transform=input_transform,
)
mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
fit_gpytorch_mll(mll)
return gp
自定义均值和协方差函数
为了实现模型间的知识迁移,我们需要自定义均值和协方差函数:
class ConditionalMean(Mean):
def __init__(self, gp):
super().__init__()
self.gp = gp
def forward(self, x):
with no_grad():
self.gp.eval()
m = self.gp(x).mean.squeeze(-1)
return m
class ConditionalScaledMaternKernel(Kernel):
has_lengthscale = True
def __init__(self, gp):
super().__init__()
self.gp = gp
self.scaled_matern_kernel = ScaleKernel(MaternKernel())
def forward(self, x1, x2, **params):
with no_grad():
self.gp.eval()
sigma = self.gp(x1).covariance_matrix.diagonal(dim1=-2, dim2=-1).sqrt().unsqueeze(-1)
sigma_ = self.gp(x2).covariance_matrix.diagonal(dim1=-2, dim2=-1).sqrt().unsqueeze(-1)
B = sigma @ sigma_.T
A = self.scaled_matern_kernel(x1, x2)
K = A + B
return K
关键实现细节
- 梯度控制:为了防止已训练模型gp2的参数被更新,需要显式关闭其参数的梯度:
for param_name, param in mll.named_parameters():
if 'gp' in param_name:
param.requires_grad = False
-
模型评估模式:在自定义函数中使用
gp.eval()确保模型处于评估模式,避免不必要的计算图构建。 -
输入输出转换处理:直接使用
gp(x)而非gp.posterior(x)可以避免输入输出转换的重复应用问题。
实际应用效果
通过上述方法构建的gp3模型能够:
- 继承gp2在大数据集上学到的模式
- 在小数据集上保持适当的灵活性
- 合理反映不同区域的预测不确定性
注意事项
-
当不使用输入输出转换时,实现会更为简单,但可能牺牲一些数值稳定性。
-
两种均值计算方式(
gp(x).mean和gp.posterior(x).mean)在有无转换的情况下表现不同,需要根据实际场景选择。 -
模型间的知识迁移效果需要通过多个不同数据集验证,以确保其泛化能力。
总结
在BoTorch中通过自定义均值和协方差函数实现GP模型间的知识迁移是一种有效的技术手段。这种方法特别适用于数据获取成本不同的场景,如部分高质量小样本数据和大量低质量数据并存的情况。通过合理控制模型参数更新和评估模式,可以实现灵活而强大的模型组合。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1