TeslaMate 中启用 pg_stat_statements 扩展的性能监控实践
2025-06-02 14:29:36作者:邵娇湘
在 TeslaMate 项目中,数据库查询性能的优化一直是个持续的过程。随着数据量的增长,某些查询可能会逐渐变慢,影响整体系统性能。本文将介绍如何通过 PostgreSQL 的 pg_stat_statements 扩展来监控和分析 TeslaMate 的数据库查询性能。
pg_stat_statements 简介
pg_stat_statements 是 PostgreSQL 提供的一个核心扩展,它能够跟踪服务器执行的所有 SQL 语句的统计信息。这个扩展特别有价值,因为它可以提供:
- 每个 SQL 语句的执行次数
- 总执行时间
- 平均执行时间
- 标准偏差
- 内存使用情况
这些指标对于识别性能瓶颈和优化查询至关重要。
在 TeslaMate 中启用 pg_stat_statements
要在 TeslaMate 的 Docker 环境中启用这个扩展,需要进行两个主要修改:
- 修改 Docker Compose 配置:
在数据库服务的配置中添加
shared_preload_libraries
参数:
database:
image: postgres:17
restart: always
command: postgres -c default_toast_compression=lz4 -c shared_preload_libraries=pg_stat_statements
# 其他配置保持不变...
- 创建数据库扩展: 在 TeslaMate 数据库中执行以下 SQL 命令:
CREATE EXTENSION IF NOT EXISTS pg_stat_statements;
使用 pg_stat_statements 数据
启用扩展后,可以通过查询 pg_stat_statements
视图获取有价值的性能数据。例如:
SELECT query, calls, total_exec_time, mean_exec_time
FROM pg_stat_statements
ORDER BY total_exec_time DESC
LIMIT 10;
这将显示最耗时的 10 个查询,帮助您识别性能瓶颈。
集成到 Grafana 仪表板
pg_stat_statements 的数据可以完美集成到 TeslaMate 的 Grafana 仪表板中。社区已经有一些现成的仪表板模板可以利用这些数据,例如显示:
- 最频繁执行的查询
- 平均执行时间最长的查询
- 查询性能随时间的变化趋势
- 内存使用情况
性能优化的实际应用
通过 pg_stat_statements 收集的数据,TeslaMate 维护团队已经:
- 识别并优化了多个慢查询
- 添加了必要的索引
- 重写了部分查询逻辑
- 监控了系统升级后的性能变化
实施建议
对于 TeslaMate 用户,特别是自行托管实例的用户,启用 pg_stat_statements 可以提供以下好处:
- 主动监控:在性能问题影响用户体验前发现它们
- 透明性:让用户更清楚他们的实例性能状况
- 优化依据:为查询优化提供数据支持
虽然这个功能可能对普通用户看起来有些技术性,但它提供的性能洞察对于维护健康的 TeslaMate 实例非常有价值。
通过本文介绍的方法,TeslaMate 用户可以轻松启用这一强大的性能监控工具,从而更好地理解和优化他们的电动汽车数据监控系统。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8