HFTBacktest项目中的示例数据获取方案解析
2025-06-30 21:26:41作者:秋阔奎Evelyn
HFTBacktest是一个高频交易回测框架,在实际使用过程中,很多开发者都会遇到示例数据获取的问题。本文将详细介绍该项目的示例数据获取方案,帮助开发者快速上手使用。
示例数据的重要性
在高频交易回测中,真实的市场数据至关重要。HFTBacktest项目原本提供了一些示例数据文件,如ethusdt_20221003.npz等,这些数据包含了ETH/USDT交易对在特定日期的市场深度和交易信息。然而,由于数据量庞大,直接在GitHub上托管这些数据会遇到存储空间和带宽限制的问题。
数据获取方案演进
项目维护者最初尝试使用GitHub LFS(大文件存储)来托管这些数据,但很快遇到了带宽限制。随后社区提出了多种解决方案:
- 使用Kaggle数据集平台
- 利用Google Drive等云存储服务
- 社区成员提供的专用存储服务器
经过多方尝试,最终由社区成员kronael提供了稳定的数据托管解决方案,开发者现在可以直接从专用服务器下载所需的高频交易数据。
替代数据获取方案
除了直接下载预处理的示例数据外,项目还提供了以下替代方案:
-
数据收集工具:项目维护者开发了专门的Rust版本数据收集工具,可以从Binance Futures USDM市场实时收集数据。这个工具效率高,适合需要自定义数据集的开发者。
-
完整流程示例:项目中新增了一个完整的回测流程示例,展示了如何从Tardis下载原始数据并进行转换的整个过程。这对于理解数据处理流程非常有帮助。
数据使用建议
在使用这些高频交易数据时,开发者应注意:
- 数据量通常很大,单个交易对单日数据就可能达到GB级别
- 数据格式为压缩的NPZ格式,需要使用Python的NumPy库进行读取
- 回测时应考虑数据的完整性和连续性,避免因数据缺失导致回测结果偏差
总结
HFTBacktest项目通过社区协作解决了示例数据获取的难题,为高频交易策略开发者提供了便利。开发者既可以直接使用预处理好的示例数据,也可以通过提供的数据收集工具获取自定义数据集,灵活满足不同的回测需求。随着项目的不断发展,数据处理和获取方案也将持续优化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137