graspologic 项目使用教程
1. 项目介绍
graspologic 是一个用于图统计算法的 Python 包。它提供了多种工具和算法,专门用于处理和分析图数据。图(或网络)是一种数学上直观的表示方法,适用于具有某种关系的数据项。例如,社交网络可以通过图来表示,其中每个参与者作为节点,连接表示他们之间的关系。
graspologic 包旨在提供专门的图统计算法,以充分利用图数据中的信息,而不仅仅是应用传统的统计技术。
2. 项目快速启动
安装
你可以通过 pip 或从 GitHub 源码安装 graspologic。
通过 pip 安装
pip install graspologic
从 GitHub 源码安装
git clone https://github.com/graspologic-org/graspologic.git
cd graspologic
python3 -m venv venv
source venv/bin/activate
python3 setup.py install
快速示例
以下是一个简单的示例,展示如何使用 graspologic 进行图的分析。
import graspologic as gs
import numpy as np
# 创建一个简单的图
adjacency_matrix = np.array([
    [0, 1, 1],
    [1, 0, 1],
    [1, 1, 0]
])
# 使用 graspologic 进行图的分析
graph = gs.Graph(adjacency_matrix)
embedding = gs.embed.AdjacencySpectralEmbed().fit_transform(graph)
print("图的嵌入结果:", embedding)
3. 应用案例和最佳实践
社交网络分析
在社交网络分析中,graspologic 可以用于识别社区结构、检测异常节点等。例如,可以使用 graspologic 的社区检测算法来识别社交网络中的不同社区。
生物信息学
在生物信息学中,graspologic 可以用于分析蛋白质相互作用网络、基因调控网络等。例如,可以使用 graspologic 的图嵌入算法来分析基因调控网络的结构。
金融网络分析
在金融网络分析中,graspologic 可以用于分析银行间的借贷关系、股票市场的关联性等。例如,可以使用 graspologic 的图匹配算法来分析银行间的借贷关系。
4. 典型生态项目
NetworkX
NetworkX 是一个用于创建、操作和研究复杂网络的 Python 包。graspologic 可以与 NetworkX 结合使用,以提供更强大的图分析功能。
PyTorch Geometric
PyTorch Geometric 是一个用于图神经网络的 PyTorch 扩展库。graspologic 可以与 PyTorch Geometric 结合使用,以提供图神经网络的训练和推理功能。
DGL (Deep Graph Library)
DGL 是一个用于图神经网络的深度学习库。graspologic 可以与 DGL 结合使用,以提供图神经网络的训练和推理功能。
通过结合这些生态项目,graspologic 可以扩展其功能,提供更全面的图分析解决方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00