graspologic 项目使用教程
1. 项目介绍
graspologic 是一个用于图统计算法的 Python 包。它提供了多种工具和算法,专门用于处理和分析图数据。图(或网络)是一种数学上直观的表示方法,适用于具有某种关系的数据项。例如,社交网络可以通过图来表示,其中每个参与者作为节点,连接表示他们之间的关系。
graspologic 包旨在提供专门的图统计算法,以充分利用图数据中的信息,而不仅仅是应用传统的统计技术。
2. 项目快速启动
安装
你可以通过 pip 或从 GitHub 源码安装 graspologic。
通过 pip 安装
pip install graspologic
从 GitHub 源码安装
git clone https://github.com/graspologic-org/graspologic.git
cd graspologic
python3 -m venv venv
source venv/bin/activate
python3 setup.py install
快速示例
以下是一个简单的示例,展示如何使用 graspologic 进行图的分析。
import graspologic as gs
import numpy as np
# 创建一个简单的图
adjacency_matrix = np.array([
[0, 1, 1],
[1, 0, 1],
[1, 1, 0]
])
# 使用 graspologic 进行图的分析
graph = gs.Graph(adjacency_matrix)
embedding = gs.embed.AdjacencySpectralEmbed().fit_transform(graph)
print("图的嵌入结果:", embedding)
3. 应用案例和最佳实践
社交网络分析
在社交网络分析中,graspologic 可以用于识别社区结构、检测异常节点等。例如,可以使用 graspologic 的社区检测算法来识别社交网络中的不同社区。
生物信息学
在生物信息学中,graspologic 可以用于分析蛋白质相互作用网络、基因调控网络等。例如,可以使用 graspologic 的图嵌入算法来分析基因调控网络的结构。
金融网络分析
在金融网络分析中,graspologic 可以用于分析银行间的借贷关系、股票市场的关联性等。例如,可以使用 graspologic 的图匹配算法来分析银行间的借贷关系。
4. 典型生态项目
NetworkX
NetworkX 是一个用于创建、操作和研究复杂网络的 Python 包。graspologic 可以与 NetworkX 结合使用,以提供更强大的图分析功能。
PyTorch Geometric
PyTorch Geometric 是一个用于图神经网络的 PyTorch 扩展库。graspologic 可以与 PyTorch Geometric 结合使用,以提供图神经网络的训练和推理功能。
DGL (Deep Graph Library)
DGL 是一个用于图神经网络的深度学习库。graspologic 可以与 DGL 结合使用,以提供图神经网络的训练和推理功能。
通过结合这些生态项目,graspologic 可以扩展其功能,提供更全面的图分析解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00