Apache Sling Jackrabbit JSR-283 访问控制管理器支持入门教程
1. 目录结构及介绍
Apache Sling JCR Jackrabbit AccessManager 的源代码目录结构如下:
├── src
│ ├── asf.yaml // ASF相关的配置文件
│ ├── gitignore // Git 忽略文件列表
│ ├── CODE_OF_CONDUCT.md // 行为准则
│ ├── CONTRIBUTING.md // 贡献指南
│ ├── Jenkinsfile // Jenkins 构建脚本
│ ├── LICENSE // 许可证文件
│ ├── README.md // 项目简介
│ └── ...
└── pom.xml // Maven 项目配置文件
该目录结构包括项目的源代码、配置文件以及用于构建和部署的相关文件。src 文件夹内是主要的源代码,而 pom.xml 是 Maven 项目的主配置文件,负责定义依赖和构建过程。
2. 项目的启动文件介绍
由于 Apache Sling 通常作为一个基于 OSGi 框架的应用运行,启动文件并不像传统的 Java 应用程序那样是一个可执行的 .jar 文件。Apache Sling 系统通过命令行工具或者集成开发环境(IDE)如 Eclipse 启动。在生产环境中,你可以使用 Apache Felix 或其他 OSGi 容器来部署此模块。
在本地开发中,你可以使用以下步骤启动一个带有 Sling 和此访问管理器模块的实例:
- 确保已安装 Apache Maven 和 JDK。
- 克隆项目到本地:
git clone https://github.com/apache/sling-org-apache-sling-jcr-jackrabbit-accessmanager.git - 导入项目到你的 IDE(例如 IntelliJ IDEA 或 Eclipse)。
- 使用 IDE 的内置功能或 Maven 命令行工具运行
mvn clean install来构建项目并生成相关 jar 包。 - 下载并安装 Apache Sling Launchpad,例如通过 Docker 镜像或者本地下载安装。
- 将构建好的模块部署到 Sling Launchpad 中,通常是在
target目录下的.war文件或.jar文件。
具体启动方式会因你的环境和需求有所不同,建议参考 Apache Sling 文档以获取更多信息。
3. 项目的配置文件介绍
Apache Sling JCR Jackrabbit AccessManager 在 Sling 上工作时,可能需要一些特定的配置来定制其行为。这些配置可以通过 OSGi 服务配置、Sling 资源或 JCR 存储中的配置节点来完成。
以下是配置的一些关键部分:
OSGi 服务配置
在 OSGi 平台上,服务可以通过元数据 (META-INF/sling.service) 或者使用 Configuration Admin Service 进行配置。这个模块的配置可能涉及设置访问控制管理器的行为,例如默认权限、角色等。
Sling 资源配置
你可以在 /apps 或 /conf 目录下创建 Sling 资源,这些资源可以用来配置模块的行为,比如设置访问规则。Sling 可以通过 Resource Resolver 解析这些路径,让它们在应用程序中生效。
JCR 存储配置
Jackrabbit AccessManager 通常会在 JCR 中保存 ACL(Access Control Lists)。因此,你可以在 JCR 数据库中修改特定的节点来调整访问控制策略。
要查看或更改配置,可以利用 Sling 提供的 Web 控制台或通过直接编辑存储的内容。
请注意,在实际应用中,具体的配置方法和选项可能会根据你的 Sling 实例以及 Jackrabbit AccessManager 版本有所不同。查阅官方文档或相关模块的 Javadoc 能获得更详细的配置指导。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00