LiquidJS中group_by_exp过滤器对对象输入的处理问题解析
问题背景
在Liquid模板引擎的Jekyll实现中,开发者经常使用group_by_exp过滤器来处理标签和文章的分类统计。一个典型的使用场景是通过标签分组并统计每个标签下的文章数量,这在博客系统中非常常见。
问题现象
在LiquidJS 10.20.0版本中,当开发者尝试直接对类似collections.postsByTag这样的对象使用group_by_exp过滤器时,会遇到输出结果不正确的问题。具体表现为:
{% assign tags_by_size = collections.postsByTag | group_by_exp: 'tag', 'tag[1].size' %}
得到的输出是[ { name: undefined, items: [ [Object] ] } ],这显然不符合预期。而在Jekyll的实现中,同样的代码能够正常工作。
问题分析
这个问题的本质在于LiquidJS对对象类型输入的处理方式。collections.postsByTag通常是一个键值对对象,结构如下:
{
"tag0": [post0, post1],
"tag1": [post1, post2]
}
在Jekyll的实现中,group_by_exp过滤器能够自动将对象转换为可迭代的键值对数组,类似于JavaScript的Object.entries()方法的结果。但在LiquidJS 10.20.0版本中,这一转换没有正确执行。
临时解决方案
在10.20.0版本中,开发者可以通过先使用自定义的entries过滤器将对象转换为键值对数组来解决这个问题:
{% assign tags_by_size = collections.postsByTag | entries | group_by_exp: 'tag', 'tag[1].size' %}
这里的entries过滤器需要自定义实现,其功能等同于JavaScript的Object.entries()。
问题修复
LiquidJS在10.20.1版本中修复了这个问题。现在,开发者可以直接对对象使用group_by_exp过滤器,无需先转换为键值对数组:
{% assign tags_by_size = collections.postsByTag | group_by_exp: 'tag', 'tag[1].size' %}
这个修复使得LiquidJS的行为与Jekyll保持一致,提高了模板代码的可移植性。
技术实现细节
在底层实现上,LiquidJS 10.20.1版本改进了group_by_exp过滤器对对象类型输入的处理逻辑。现在它会:
- 自动检测输入是否为对象
- 如果是对象,则自动将其转换为键值对数组
- 然后对每个键值对应用表达式
这种改进保持了与Jekyll的兼容性,同时提供了更直观的使用体验。
最佳实践
对于需要在不同Liquid实现间移植代码的开发者,建议:
- 明确了解所使用的LiquidJS版本
- 对于10.20.0及以下版本,使用
entries过滤器预处理对象 - 对于10.20.1及以上版本,可以直接使用对象输入
- 在跨平台项目中,考虑添加版本检测逻辑或统一使用兼容性写法
总结
LiquidJS 10.20.1版本对group_by_exp过滤器的改进解决了对象输入处理的问题,使得从Jekyll迁移到Eleventy等基于LiquidJS的项目更加顺畅。这一改进体现了LiquidJS项目对兼容性和开发者体验的重视,也提醒我们在使用开源库时要注意版本差异和兼容性问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00