Grafana Kubernetes 仪表板中节点指标缺失问题的分析与解决
问题背景
在使用 kube-prometheus-stack 部署 Kubernetes 监控系统时,用户遇到了 Grafana 仪表板中节点相关指标不显示的问题。具体表现为"Nodes"仪表板中的各项指标均为空值,而其他仪表板如"Namespaces"和"Global"虽有数据显示但不完整。
环境配置
用户环境基于 Kubernetes 1.27.3 版本,通过 Flux CD 部署了 kube-prometheus-stack 58.2.2 版本。部署配置中包含了多个 Grafana 仪表板,包括系统 API Server、CoreDNS、全局视图、命名空间视图、节点视图和 Pod 视图等。
问题排查过程
初始配置检查
用户最初尝试通过添加 relabeling 配置来解决指标缺失问题:
prometheus-node-exporter:
prometheus:
monitor:
relabelings:
- action: replace
sourceLabels: [__meta_kubernetes_pod_node_name]
targetLabel: nodename
这种配置的目的是将 Pod 节点名称重新标记为 nodename,但未能解决问题。
深入分析
进一步检查发现,核心问题在于 Prometheus 无法正确采集 node-exporter 的指标。关键指标如 kube_node_info 查询返回空值,这表明 Prometheus 与 node-exporter 之间的服务发现或指标采集链路存在问题。
配置调整尝试
根据社区建议,进行了以下配置调整:
- 移除了原有的 relabeling 配置
- 修改了 PrometheusSpec 中的选择器配置:
podMonitorSelectorNilUsesHelmValues: false
serviceMonitorSelectorNilUsesHelmValues: false
- 检查了 Prometheus 资源请求配置,确认内存设置足够(200Mi)
根本原因与解决方案
问题最终被发现是由于 CRD(Custom Resource Definitions)残留导致的。在 Kubernetes 中,CRD 定义了自定义资源的结构和行为。当这些定义出现问题时,会影响整个监控系统的运作。
解决方案步骤如下:
- 完全移除现有的 kube-prometheus-stack 相关 CRD
- 重新部署整个监控堆栈
- 确保所有组件正常启动且无错误日志
经验总结
-
CRD 管理重要性:在升级或重新部署监控系统时,CRD 的正确管理至关重要。残留或冲突的 CRD 定义可能导致各种难以诊断的问题。
-
资源配置考量:虽然 Prometheus 的内存请求设置为 200Mi 在此案例中足够,但在生产环境中建议根据集群规模适当增加,一般建议至少 1Gi 内存。
-
监控组件交互:理解 Prometheus、node-exporter 和 Grafana 之间的交互关系对于问题诊断很有帮助。当仪表板数据显示异常时,应首先检查底层指标是否可被正确采集。
-
渐进式调试:从最简单的配置开始,逐步添加功能,比一次性部署复杂配置更容易定位问题。
最佳实践建议
- 在部署或升级监控系统前,先清理旧的 CRD 和资源
- 使用 Helm 的 dry-run 功能验证配置变更
- 监控 Prometheus 和 node-exporter 的日志以获取潜在错误信息
- 定期检查 Prometheus 的目标状态页面,确认所有监控目标健康
- 对于生产环境,考虑使用独立的 Prometheus 实例来监控关键基础设施组件
通过这次问题解决过程,我们再次认识到 Kubernetes 监控系统的复杂性,以及正确理解和配置各组件之间关系的重要性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00