首页
/ Grafana Kubernetes 仪表板中节点指标缺失问题的分析与解决

Grafana Kubernetes 仪表板中节点指标缺失问题的分析与解决

2025-06-27 07:12:58作者:庞队千Virginia

问题背景

在使用 kube-prometheus-stack 部署 Kubernetes 监控系统时,用户遇到了 Grafana 仪表板中节点相关指标不显示的问题。具体表现为"Nodes"仪表板中的各项指标均为空值,而其他仪表板如"Namespaces"和"Global"虽有数据显示但不完整。

环境配置

用户环境基于 Kubernetes 1.27.3 版本,通过 Flux CD 部署了 kube-prometheus-stack 58.2.2 版本。部署配置中包含了多个 Grafana 仪表板,包括系统 API Server、CoreDNS、全局视图、命名空间视图、节点视图和 Pod 视图等。

问题排查过程

初始配置检查

用户最初尝试通过添加 relabeling 配置来解决指标缺失问题:

prometheus-node-exporter:
  prometheus:
    monitor:
      relabelings:
      - action: replace
        sourceLabels: [__meta_kubernetes_pod_node_name]
        targetLabel: nodename

这种配置的目的是将 Pod 节点名称重新标记为 nodename,但未能解决问题。

深入分析

进一步检查发现,核心问题在于 Prometheus 无法正确采集 node-exporter 的指标。关键指标如 kube_node_info 查询返回空值,这表明 Prometheus 与 node-exporter 之间的服务发现或指标采集链路存在问题。

配置调整尝试

根据社区建议,进行了以下配置调整:

  1. 移除了原有的 relabeling 配置
  2. 修改了 PrometheusSpec 中的选择器配置:
podMonitorSelectorNilUsesHelmValues: false
serviceMonitorSelectorNilUsesHelmValues: false
  1. 检查了 Prometheus 资源请求配置,确认内存设置足够(200Mi)

根本原因与解决方案

问题最终被发现是由于 CRD(Custom Resource Definitions)残留导致的。在 Kubernetes 中,CRD 定义了自定义资源的结构和行为。当这些定义出现问题时,会影响整个监控系统的运作。

解决方案步骤如下

  1. 完全移除现有的 kube-prometheus-stack 相关 CRD
  2. 重新部署整个监控堆栈
  3. 确保所有组件正常启动且无错误日志

经验总结

  1. CRD 管理重要性:在升级或重新部署监控系统时,CRD 的正确管理至关重要。残留或冲突的 CRD 定义可能导致各种难以诊断的问题。

  2. 资源配置考量:虽然 Prometheus 的内存请求设置为 200Mi 在此案例中足够,但在生产环境中建议根据集群规模适当增加,一般建议至少 1Gi 内存。

  3. 监控组件交互:理解 Prometheus、node-exporter 和 Grafana 之间的交互关系对于问题诊断很有帮助。当仪表板数据显示异常时,应首先检查底层指标是否可被正确采集。

  4. 渐进式调试:从最简单的配置开始,逐步添加功能,比一次性部署复杂配置更容易定位问题。

最佳实践建议

  1. 在部署或升级监控系统前,先清理旧的 CRD 和资源
  2. 使用 Helm 的 dry-run 功能验证配置变更
  3. 监控 Prometheus 和 node-exporter 的日志以获取潜在错误信息
  4. 定期检查 Prometheus 的目标状态页面,确认所有监控目标健康
  5. 对于生产环境,考虑使用独立的 Prometheus 实例来监控关键基础设施组件

通过这次问题解决过程,我们再次认识到 Kubernetes 监控系统的复杂性,以及正确理解和配置各组件之间关系的重要性。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8