LHM项目中TensorList报错问题的分析与解决方案
问题背景
在使用LHM项目进行视频动作处理时,用户遇到了一个RuntimeError错误,提示"stack expects a non-empty TensorList"。这个错误发生在处理运动序列准备阶段,具体是在尝试将相机到世界坐标系的变换矩阵堆叠时出现的。
错误分析
从错误堆栈中可以识别出几个关键问题点:
-
核心错误:
RuntimeError: stack expects a non-empty TensorList表明程序尝试对一个空的张量列表进行堆叠操作,这在PyTorch中是不允许的。 -
前置依赖问题:在错误堆栈中可以看到
ModuleNotFoundError: No module named 'mmpose',这表明系统缺少mmpose模块,这是OpenMMLab项目中的一个重要组件,用于姿态估计。 -
环境配置问题:用户在后续讨论中提到CUDA 12.6环境下无法安装pytorch3d,这暗示可能存在环境兼容性问题。
解决方案
1. 安装缺失的mmpose模块
mmpose是OpenMMLab项目中的姿态估计工具包,对于LHM项目的动作处理流程至关重要。可以通过以下命令安装:
pip install mmpose
或者从源码安装最新版本:
git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip install -r requirements.txt
pip install -v -e .
2. 解决CUDA环境问题
对于CUDA 12.6与pytorch3d的兼容性问题,建议采取以下方案:
- 方案一:降级CUDA版本至12.1,这是经过验证的稳定版本
- 方案二:从源码编译pytorch3d,确保与CUDA 12.6兼容
- 方案三:使用conda创建独立环境,安装指定版本的CUDA和PyTorch
3. 检查输入数据有效性
空TensorList错误通常意味着前置处理步骤未能生成有效数据。建议:
- 验证输入视频文件的完整性和可读性
- 检查视频处理中间步骤是否产生预期输出
- 添加调试代码,在堆叠操作前检查张量列表是否为空
预防措施
为避免类似问题再次发生,建议:
- 完整阅读文档:确保安装所有必要的依赖项
- 使用虚拟环境:为项目创建独立的Python环境
- 分步验证:先单独测试各组件功能,再整合运行
- 日志增强:在关键处理步骤添加详细的日志输出
技术要点解析
-
TensorList堆叠:PyTorch的
torch.stack()操作要求输入列表非空,这是为了确保张量维度的正确性。 -
姿态估计流程:LHM项目依赖mmpose进行人体姿态估计,这是生成运动序列数据的关键步骤。
-
CUDA兼容性:深度学习项目对CUDA版本有严格要求,版本不匹配会导致各种难以诊断的问题。
通过以上分析和解决方案,应该能够有效解决LHM项目中遇到的TensorList报错问题,并建立起更健壮的项目运行环境。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00