LHM项目中TensorList报错问题的分析与解决方案
问题背景
在使用LHM项目进行视频动作处理时,用户遇到了一个RuntimeError错误,提示"stack expects a non-empty TensorList"。这个错误发生在处理运动序列准备阶段,具体是在尝试将相机到世界坐标系的变换矩阵堆叠时出现的。
错误分析
从错误堆栈中可以识别出几个关键问题点:
-
核心错误:
RuntimeError: stack expects a non-empty TensorList表明程序尝试对一个空的张量列表进行堆叠操作,这在PyTorch中是不允许的。 -
前置依赖问题:在错误堆栈中可以看到
ModuleNotFoundError: No module named 'mmpose',这表明系统缺少mmpose模块,这是OpenMMLab项目中的一个重要组件,用于姿态估计。 -
环境配置问题:用户在后续讨论中提到CUDA 12.6环境下无法安装pytorch3d,这暗示可能存在环境兼容性问题。
解决方案
1. 安装缺失的mmpose模块
mmpose是OpenMMLab项目中的姿态估计工具包,对于LHM项目的动作处理流程至关重要。可以通过以下命令安装:
pip install mmpose
或者从源码安装最新版本:
git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip install -r requirements.txt
pip install -v -e .
2. 解决CUDA环境问题
对于CUDA 12.6与pytorch3d的兼容性问题,建议采取以下方案:
- 方案一:降级CUDA版本至12.1,这是经过验证的稳定版本
- 方案二:从源码编译pytorch3d,确保与CUDA 12.6兼容
- 方案三:使用conda创建独立环境,安装指定版本的CUDA和PyTorch
3. 检查输入数据有效性
空TensorList错误通常意味着前置处理步骤未能生成有效数据。建议:
- 验证输入视频文件的完整性和可读性
- 检查视频处理中间步骤是否产生预期输出
- 添加调试代码,在堆叠操作前检查张量列表是否为空
预防措施
为避免类似问题再次发生,建议:
- 完整阅读文档:确保安装所有必要的依赖项
- 使用虚拟环境:为项目创建独立的Python环境
- 分步验证:先单独测试各组件功能,再整合运行
- 日志增强:在关键处理步骤添加详细的日志输出
技术要点解析
-
TensorList堆叠:PyTorch的
torch.stack()操作要求输入列表非空,这是为了确保张量维度的正确性。 -
姿态估计流程:LHM项目依赖mmpose进行人体姿态估计,这是生成运动序列数据的关键步骤。
-
CUDA兼容性:深度学习项目对CUDA版本有严格要求,版本不匹配会导致各种难以诊断的问题。
通过以上分析和解决方案,应该能够有效解决LHM项目中遇到的TensorList报错问题,并建立起更健壮的项目运行环境。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00