PyKAN项目中hellokan.ipynb运行时NaN错误分析与解决方案
问题现象
在使用PyKAN项目的hellokan.ipynb示例时,用户遇到了一个典型的运行时错误。在执行自动符号回归训练过程中,程序在LBFGS优化器下出现了NaN损失值,最终导致训练中断。有趣的是,当切换为Adam优化器时,训练能够正常完成。
错误分析
根本原因
该问题的核心在于符号函数的选择与输入数据的匹配性。在自动符号回归模式下,系统可能会选择对数函数(log)等对输入范围有严格要求的函数。当输入数据包含零或负值时,对数函数会产生未定义行为,导致计算过程中出现NaN值。
优化器差异
LBFGS优化器对数值稳定性更为敏感,一旦出现NaN就会立即失败。而Adam优化器具有更好的鲁棒性,能够在一定程度上容忍数值异常,因此能够完成训练。但这只是掩盖了问题而非真正解决。
技术细节
符号回归机制
PyKAN的自动符号回归功能会从预定义的函数库中选择最佳拟合函数。在hellokan.ipynb示例中,函数库包含:
- 多项式函数:x, x², x³, x⁴
- 超越函数:exp, log, sqrt, tanh, sin
- 其他函数:abs
数值稳定性问题
当选择对数函数时,需要确保所有输入数据严格大于零。在实际应用中,即使原始数据为正,经过网络变换后中间值仍可能变为非正数,导致计算失败。
解决方案
-
数据预处理:确保输入数据在安全范围内,可以通过平移或缩放实现。
-
函数库定制:根据数据特性调整函数库,移除可能引发问题的函数。
-
优化器选择:对于复杂问题,可以先使用Adam优化器进行初步训练,再切换到LBFGS进行精细优化。
-
随机初始化:多次运行结果相同的问题源于Jupyter notebook的固定随机种子,重启内核可获取不同结果。
最佳实践建议
-
在自动符号回归前,先分析数据分布特征。
-
实施梯度裁剪等数值稳定技术。
-
建立完善的错误监控机制,在出现NaN时能够及时中断并记录状态。
-
对于生产环境,建议采用手动模式指定符号函数,确保系统稳定性。
通过理解这些技术细节和解决方案,用户可以更有效地使用PyKAN进行符号回归分析,避免常见的数值计算陷阱。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00