PyKAN项目中hellokan.ipynb运行时NaN错误分析与解决方案
问题现象
在使用PyKAN项目的hellokan.ipynb示例时,用户遇到了一个典型的运行时错误。在执行自动符号回归训练过程中,程序在LBFGS优化器下出现了NaN损失值,最终导致训练中断。有趣的是,当切换为Adam优化器时,训练能够正常完成。
错误分析
根本原因
该问题的核心在于符号函数的选择与输入数据的匹配性。在自动符号回归模式下,系统可能会选择对数函数(log)等对输入范围有严格要求的函数。当输入数据包含零或负值时,对数函数会产生未定义行为,导致计算过程中出现NaN值。
优化器差异
LBFGS优化器对数值稳定性更为敏感,一旦出现NaN就会立即失败。而Adam优化器具有更好的鲁棒性,能够在一定程度上容忍数值异常,因此能够完成训练。但这只是掩盖了问题而非真正解决。
技术细节
符号回归机制
PyKAN的自动符号回归功能会从预定义的函数库中选择最佳拟合函数。在hellokan.ipynb示例中,函数库包含:
- 多项式函数:x, x², x³, x⁴
- 超越函数:exp, log, sqrt, tanh, sin
- 其他函数:abs
数值稳定性问题
当选择对数函数时,需要确保所有输入数据严格大于零。在实际应用中,即使原始数据为正,经过网络变换后中间值仍可能变为非正数,导致计算失败。
解决方案
-
数据预处理:确保输入数据在安全范围内,可以通过平移或缩放实现。
-
函数库定制:根据数据特性调整函数库,移除可能引发问题的函数。
-
优化器选择:对于复杂问题,可以先使用Adam优化器进行初步训练,再切换到LBFGS进行精细优化。
-
随机初始化:多次运行结果相同的问题源于Jupyter notebook的固定随机种子,重启内核可获取不同结果。
最佳实践建议
-
在自动符号回归前,先分析数据分布特征。
-
实施梯度裁剪等数值稳定技术。
-
建立完善的错误监控机制,在出现NaN时能够及时中断并记录状态。
-
对于生产环境,建议采用手动模式指定符号函数,确保系统稳定性。
通过理解这些技术细节和解决方案,用户可以更有效地使用PyKAN进行符号回归分析,避免常见的数值计算陷阱。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00